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Introduction

The subject of this talk

The problem: rectilinear crossing number cr(Kn) of Kn

Rectilinear (or geometric) drawing of graph G

Every edge is a straight segment

Rectilinear crossing number cr(G ) of a graph G

Minimum number of edge crossings in a rectilinear drawing of G

Problem (attributed to Erdös, ca. 1940)

What is cr(Kn)?
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The rectilinear crossing number: a different ball game

A “usual” drawing of K8 with 18 crossings.

This is an optimal drawing: cr(K8) = 18.
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The rectilinear crossing number: a different ball game

This type of drawing can be generalized: Kn can be drawn with
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Conjecture (Hill, 1959)

cr(Kn) = Z (n).

Verified for n ≤ 12. Open for n > 12.
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Introduction

The rectilinear crossing number: a different ball game

We know cr(Kn) > cr(Kn) for n = 8 and n ≥ 10 (more on that,
later). But how much bigger? We don’t know. . . we don’t know
cr(Kn) in general. But we know a lot more about cr(Kn) than
about cr(Kn):

We know cr(Kn) for n ≤ 12 (only).

We know cr(Kn) for n ≤ 27 and n = 30.

The quotient between the best known lower and upper bounds
for cr(Kn) is 0.859 (or 0.8, if you don’t believe in computers).

The quotient between the best known lower and upper bounds
for cr(Kn) is 0.998 (independent of your faith).
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Remind us why should anyone care about the rectilinear crossing number?

There are additional motivations to care about cr(Kn) (other than
natural curiosity):

Close relationship with important parameters in discrete
geometry.

Close relationship (actually, equivalence to) an Erdős-Szekeres
type of question (atributed to Erdős).

Close relationship to Sylvester’s Four Point Problem from
geometric probability.
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Try to run this image as a background process in your brain during the talk

(Underlying point set of) rectilinear drawing of K51

Before we move on: here’s a rectilinear drawing of K51. It’s
relevant (I’ll tell you why), and it illustrates well, in a way, how all
known optimal rectilinear drawings of Kn look like.
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An Erdős-Szekeres problem: convex quadrilaterals

An equivalent (Erdös’s actual) question

P a set of n points in the plane in general position
�(P) := Number of convex quadrilaterals defined by points in P
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History and connections

An Erdős-Szekeres problem: convex quadrilaterals

The usual reduction

Instead of cr(Kn), we focus on

q∗ := lim
n→∞

cr(Kn)(n
4

)

Why?

This is the proportion of quadrilaterals that define a crossing,
in an optimal rectilinear drawing.

Only the most optimistic among us (read: ∅) expects that
we’ll ever know the exact value of cr(Kn) for large n. So the
asymptotics is a reasonable measure of the quality of our
bounds.
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Connections

Connection to Sylvester’s Four Point Problem

Let µ be a probability distribution in the plane (easy case: uniform
distribution on your favorite region)

�(µ) := probability that four independent µ–random points form a
convex quadrilateral

Question (J.J. Sylvester, 1864)

What is Sylvester’s Four Point Constant infµ�(µ)?

The surprising connection (Scheinerman and Wilf, 1990)

infµ�(µ) = q∗ = limn→∞
cr(Kn)

(n4)
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History and connections

Connections

Connections to k-edges and (≤ k)-edges

P an n-point set. A k-edge of P is a line ` that goes through two
points p, q or P, and one of the halfplanes defined by ` has exactly
k points (the other halfplane has n − k − 2 points)

A 3-edge (also a 5-edge)

A (≤ k)-edge is a j-edge with j ≤ k (a 2-edge is a (≤ 2)-edge, also
a (≤ 3)− edge, also a (≤ 4)-edge, etc.)
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Connections

Connections to k-edges and (≤ k)-edges

P an n-point set. The number of (≤ k)-edges in P is E≤k(P).

Theorem (Lovász, Wagner, Wesztergombi, and Welzl;
Ábrego and Fernández-Merchant (2004))

cr(P) =
∑bn/2c−2

k=0 (n − 2k − 3)E≤k(P) + smaller order terms

Let E≤k(n) be the minimum E≤k(P) over all n-point sets P.

Lower bounds on E≤k(n) give lower bounds on cr(Kn)

cr(Kn) ≥
bn/2c−2∑
k=0

(n − 2k − 3)E≤k(n) + smaller order terms

THIS IS HOW we obtain lower bounds for cr(Kn)
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History and connections

Connections

Halving lines

Another object from discrete geometry

A halving line of a set point S is a line that spans two points of S
and leaves (|S | − 2)/2 points of S on each semiplane

A classical problem

Maximum number h(n) of halving lines in an n–point set?

Relationship to cr(Kn)

At least for n ≤ 27 (not known if also for larger n) a point set S
minimizes rectilinear crossing number ↔ S maximizes the number
of halving lines
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History and connections

Connections

In conclusion, the problem of determining cr(Kn) has fruitful,
interesting, important connections:

The Erdős-Szekeres problem of determining the minimum
number of convex quadrilaterals in an n-point set is equivalent
to determining cr(Kn)

Sylvester’s Four Point Constant is determined by cr(Kn)

cr(Kn) also has close ties to k- and (≤ k)-edges — these ties
are so close that all the progress in the last 10 years (which is
all the substantial progress ever done) depends on this

Progress on the difficult problem of estimating the number of
halving lines has also depended (in the last 10 years) on
progress made on cr(Kn)
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History and connections

State of the art

Progress on q∗ := limn→∞
cr(Kn)

(n4)

q∗ < 0.3846 (Singer, 1971)
0.2905 < q∗ (Scheinerman and Wilf, 1994)

q∗ < 0.3838 (Brodsky, 2000)
0.3288 < q∗ (Wagner, 2003)
0.37501 < q∗ (Lovasz, Vesztergombi,

Wagner, and Welzl, 2004)
q∗ < 0.3807 (Aichholzer and Krasser, 2004)

0.37553 < q∗ (Balogh and S., 2005)
q∗ < 0.38055 (Abrego and Fernandez, 2006)

0.3796 < q∗ (Aichholzer, Orden, Ramos, 2006)
0.37992 < q∗ (Abrego, Fernández,

Leaños, and S., 2007)
q∗ < 0.38048 (Abrego, Cetina,

Fernández, and S., 2008)
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History and connections

State of the art

Progress on q∗ := limn→∞
cr(Kn)

(n4)

Current best

0.37992 < q∗ < 0.38048

0.37992
0.38048 ≈ 0.998
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History and connections

State of the art

Same story for EXACT results: stuck, then progress

Exact results

We know the exact value of cr(Kn) for n ≤ 27
(Ábrego, Fernández, Leaños, and S., 2007).

cr(K30) is also known
(Cetina, Hernández-Vélez, Leaños, 2010)
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History and connections

State of the art

What happened?

Back in 2000, Brodsky et al. published a paper (Electronic Journal
of Combinatorics) where they proved that cr(K10) = 62.
It’s 30 pages long.

(Nobody asked anyone, but. . . ) if the question had been raised:
“With these techniques available in 2000: how many pages would
it take to compute exactly K30?”, it’s reasonable to think of an
answer in the order of “1010 pages” (actually, a lot more)

However, in 2010, cr(K30) = 9726 was proved. . . in 10 pages (!).

What happened?
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Breakthrough

The fruitful connection

In 2003/2004, Ábrego-Fernández-Merchant, and, independently,
Lovász-Vesztergombi-Wagner-Welzl discovered (and exploited) the
relationship between cr(Kn) and (≤ k)-edges:

Theorem (Lovász, Wagner, Wesztergombi, and Welzl;
Ábrego and Fernández-Merchant (2004))

cr(P) =
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Lower bounds on E≤k(n) give lower bounds on cr(Kn)
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Breakthrough

The fruitful connection

The crucial observation

Points u, v ,w , x . How many ordered 4-tuples on these points there
exist, such that the line spanning u and v separates w and x?

4 ways, if u, v ,w , x form a convex quadrilateral

6 ways, if u, v ,w , x don’t form a convex quadrilateral

v

x
u

w

u

w

v
x

Convex position Nonconvex position
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Breakthrough

The fruitful connection

This observation + some easy counting. . .

Let �(P) denote the number of convex quadrilaterals of P.

Let ej(P) denote the number of j-edges of P.

�(P) =
∑

j< n−2
2

ej(P)

(
n − 2

2
− j

)2

− 3

4

(
n

3

)

“Integrating”, we obtain

�(P) =

bn/2c−2∑
k=0

(n − 2k − 3)E≤k(P) + smaller order terms

The (huge) consequence

Want to count crossings? Count (≤ k)-edges.
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Breakthrough

The fruitful connection

�(P) =

bn/2c−2∑
k=0

(n − 2k − 3)E≤k(P) + smaller order terms

�(n) := minimum �(P) over all n-point sets P

E≤k(n) := minimum ≤k(P) over all n-point sets P

The crucial inequality

cr(Kn) = �(n) ≥
bn/2c−2∑
k=0

(n−2k−3)E≤k(n)+ smaller order terms
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Breakthrough

The fruitful connection

The crucial inequality

cr(Kn) = �(n) ≥
bn/2c−2∑
k=0

(n−2k−3)E≤k(n)+ smaller order terms

Recall: E≤k(n) := minimum E≤k(P) over all n-point sets P

Lower bounds on E≤k(n) =⇒ lower bounds on cr(Kn)

But. . . how do we obtain lower bounds on E≤k(n)?



The rectilinear crossing number of Kn : closing in (or are we?)

Breakthrough

An amazing tool

Circular sequences

1
2

3 4

5

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

This sequence of permutations is the circular sequence Π(P) of P
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Circular sequences

1
2
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This sequence of permutations is the circular sequence Π(P) of P
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Breakthrough

An amazing tool

Circular sequences

The circular sequence Π(P)
of P encodes valuable
geometrical information.

In particular, (≤ k)-edges
are very easy to identify. . .

1 2 3 4 5
1 3 2 4 5
1 3 4 2 5
1 3 4 5 2
3 1 4 5 2
3 1 5 4 2
3 5 1 4 2
5 3 1 4 2
5 3 4 1 2
5 3 4 2 1
5 4 3 2 1



The rectilinear crossing number of Kn : closing in (or are we?)

Breakthrough

An amazing tool

Circular sequences

The circular sequence Π(P)
of P encodes valuable
geometrical information.

In particular, (≤ k)-edges
are very easy to identify. . .

1 2 3 4 5
1 3 2 4 5
1 3 4 2 5
1 3 4 5 2
3 1 4 5 2
3 1 5 4 2
3 5 1 4 2
5 3 1 4 2
5 3 4 1 2
5 3 4 2 1
5 4 3 2 1



The rectilinear crossing number of Kn : closing in (or are we?)

Breakthrough

An amazing tool

Circular sequences

1
2

3 4

5

1 2 3 4 5
1 3 2 4 5
1 3 4 2 5
1 3 4 5 2
3 1 4 5 2
3 1 5 4 2
3 5 1 4 2
5 3 1 4 2
5 3 4 1 2
5 3 4 2 1
5 4 3 2 1

This transposition identifies a 2-edge (a 1-edge as well)
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An amazing tool

Circular sequences

The circular sequence is a
sequence of transpositions.
Each transposition is a
k-edge for some k — it
suffices to see how many
points the transposing
elements have to their left
(or right).

In particular, (≤ k)-edges
are very easy to identify. . .
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The rectilinear crossing number of Kn : closing in (or are we?)

Breakthrough

An amazing tool

Circular sequences: the tool to bound the number of (≤ k)-edges.

E≤k(n) := minimum E≤k(P) over all n-point sets P

cr(Kn) = �(n) ≥
bn/2c−2∑
k=0

(n−2k−3)E≤k(n)+ smaller order terms

In order to (lower) bound E≤k(n). . .

It suffices to check, over all circular sequences on n elements,
which one has the smallest number of transpositions involving the
leftmost or rightmost k columns

Of course, a lot easier to say than to do, but still. . .
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The rectilinear crossing number of Kn : closing in (or are we?)

Breakthrough

A crossing-minimal “drawing” of K9

1 2 3 4 5 6 7 8 9

1 2 4 3 5 6 7 8 9

1 4 2 3 5 6 7 8 9

4 1 2 3 5 6 7 8 9

4 1 2 5 3 6 7 8 9

4 1 5 2 3 6 7 8 9

4 5 1 2 3 6 7 8 9

4 5 1 2 6 3 7 8 9

4 5 1 6 2 3 7 8 9

4 5 6 1 2 3 7 8 9

4 5 6 2 1 3 7 8 9

4 5 6 2 3 1 7 8 9

4 5 6 3 2 1 7 8 9

4 5 6 3 2 7 1 8 9

4 5 6 3 2 7 8 1 9

4 5 6 3 2 7 8 9 1

4 5 6 3 7 2 8 9 1

4 5 6 3 7 8 2 9 1

4 5 6 3 7 8 9 2 1

3 0-edges

6 1-edges

9 2-edges

18 3-edges

4 5 6 7 3 8 9 2 1

4 5 6 7 8 3 9 2 1

4 5 6 7 8 9 3 2 1

4 5 6 7 9 8 3 2 1

4 5 6 9 7 8 3 2 1

4 5 6 9 8 7 3 2 1

4 5 9 6 8 7 3 2 1

4 9 5 6 8 7 3 2 1

9 4 5 6 8 7 3 2 1

9 4 5 8 6 7 3 2 1

9 4 8 5 6 7 3 2 1

9 8 4 5 6 7 3 2 1

9 8 4 5 7 6 3 2 1

9 8 4 7 5 6 3 2 1

9 8 7 4 5 6 3 2 1

9 8 7 4 6 5 3 2 1

9 8 7 6 4 5 3 2 1

9 8 7 6 5 4 3 2 1

There’s a clear pattern: 3, 6, 9,
. . . This is not a coincidence.



The rectilinear crossing number of Kn : closing in (or are we?)

Breakthrough

A crossing-minimal “drawing” of K9

In the crossing-minimal “drawing” I just showed you, there are:

3 0-edges

6 1-edges

9 2-edges

18 3-edges

(that’s all; with 9 points, a 4-edge is also a 3-edge)

There is a clear pattern, 3, 6, 9 . . . This was noticed by
Ábrego-Fernández and Lovász et al.:

Bound for (≤ k)–edges (using circular sequences)

E≤k(n) ≥ 3

(
k + 1

2

)
This bound is actually tight for k ≤ n/3− 1.
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A crossing-minimal “drawing” of K9

There are 3 1-edges (and so 6 (≤ 1)-edges)
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Breakthrough

A crossing-minimal “drawing” of K9

Bound for (≤ k)–edges (using circular sequences)

E≤k(n) ≥ 3

(
k + 1

2

)
So this bound is actually tight for k ≤ n/3− 1.

It is not tight for k > n/3− 1. . . room for improvement!
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The rectilinear crossing number of Kn : closing in (or are we?)

Breakthrough

Using (≤ k)-edges to lower bound cr(Kn)

cr(Kn) = �(n) ≥
bn/2c−2∑
k=0

(n−2k−3)E≤k(n)+ smaller order terms

Bound for (≤ k)–edges (using circular sequences)

E≤k(n) ≥ 3

(
k + 1

2

)

Using these two ingredients, by an elementary calculation. . .

q∗ := limn→∞
cr(Kn)

(n4)
≥ 0.375

Actually, Lovász et al. went a little further:

Bound obtained by Lovász et al.

q∗ := limn→∞
cr(Kn)

(n4)
> 0.37501
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Breakthrough

Using (≤ k)-edges to lower bound cr(Kn)

Bound obtained by Lovász et al.

q∗ := limn→∞
cr(Kn)

(n4)
> 0.37501

Why is the 0.00001 relevant?

cr(Kn) ≤
⌊
n

2

⌋⌊
n − 1

2

⌋⌊
n − 2

2

⌋⌊
n − 3

2

⌋
Thus

lim
n→∞

cr(Kn)(n
4

) ≤ lim
n→∞

bn2cb
n−1

2 cb
n−2

2 cb
n−3

2 c(n
4

) = 0.375

This explains why Lovász would bother with 0.00001. . .

lim
n→∞

cr(Kn)(n
4

) > lim
n→∞

cr(Kn)(n
4

)
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The rectilinear crossing number of Kn : closing in (or are we?)

Lower bounds

Refining the first nontrivial bound

Current best lower bound

Bound for (≤ k)–edges (using circular sequences)
Ábrego, Cetina, Fernández-Merchant, Leaños, S., 2008

E≤k(n) ≥ 3
(k+1

2

)
+ 3
(n−k/3+1

2

)
+ ugly stuff

“ugly stuff” only applies to k > 4n/9;

this inequality is sharp for k ≤ 4n/9

Using this, by an elementary calculation. . .

q∗ := limn→∞
cr(Kn)

(n4)
> 0.37992
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The rectilinear crossing number of Kn : closing in (or are we?)

Lower bounds

Refining the first nontrivial bound

Application to exact results

Bound for (≤ k)–edges

E≤k(n) ≥ 3
(k+1

2

)
+ 3
(n−k/3+1

2

)
+ ugly stuff

Using this, and the equation that relates cr(Kn) to E≤k(n), very
easy calculations give:

Exact results

We know the exact value of cr(Kn) for n ≤ 27
(Ábrego, Fernández, Leaños, and S., 2007).

cr(K30) is also known
(Cetina, Hernández-Vélez, Leaños, 2010)



The rectilinear crossing number of Kn : closing in (or are we?)

Lower bounds

Refining the first nontrivial bound

Minimizing (≤ k)-edges and crossing number

SO FAR

(n ≤ 27, the values for which we know the exact value of cr(Kn)):

n–point set S minimizes cr(Kn)
if and only if

for k = 1, 2, . . . , n/2− 1, S minimizes E≤k(n)
and, consequently, if and only if

S maximizes the number h(n) of halving lines

But we have evidence that indicates this won’t be the case for
larger values of n. . .
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The rectilinear crossing number of Kn : closing in (or are we?)

Upper bounds

The intriguing reality

Remark on the upper bounds. . . we just don’t have any
“natural” geometric drawings of Kn!

For all popular families of graphs, we easily come up with natural
drawings with (apparently) few crossings:

Automatically, any drawing gives an upper bound

Eventually, a drawing survives the test of time – and you have
a conjecture for the crossing number of your graph

We are not in this situation in our case of interest: nobody knows
how to produce good rectilinear drawings of Kn — not good
enough, anyway

At a somewhat philosophical level, the lack of an aim makes things
even harder for the lower bounds side — normally the only side we
need to work on
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The rectilinear crossing number of Kn : closing in (or are we?)

Upper bounds

But what can be done?

What we do to get the best upper bounds available

The paradigm (Brodsky et al.; Aichholzer et al.)

Start with some drawing of Kp

Substitute each point with a cluster of points

Design a crossing–friendly layout for each cluster

Our own twist

Start with nonnecessarily good drawings of Kp

Work with clusters of distinct sizes

Make each two points in a cluster define a halving line

The gory details. . .

Start with (NOT OPTIMAL) drawing of K51, get drawing of K505,
then iteratively drawings of K2N ·505.
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then iteratively drawings of K2N ·505.



The rectilinear crossing number of Kn : closing in (or are we?)

Upper bounds

But what can be done?

What we do to get the best upper bounds available

The paradigm (Brodsky et al.; Aichholzer et al.)

Start with some drawing of Kp

Substitute each point with a cluster of points

Design a crossing–friendly layout for each cluster

Our own twist

Start with nonnecessarily good drawings of Kp

Work with clusters of distinct sizes

Make each two points in a cluster define a halving line

The gory details. . .

Start with (NOT OPTIMAL) drawing of K51, get drawing of K505,
then iteratively drawings of K2N ·505.



The rectilinear crossing number of Kn : closing in (or are we?)

Upper bounds

Our proposal

Drawing of Kn (some n)



The rectilinear crossing number of Kn : closing in (or are we?)

Upper bounds

Our proposal

Optimal K6

If you say “hey, this is voodoo!”, I reply: “You’re missing

the point! It’s the most successful voodoo around!”

Drawing of Kn (some n)
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Upper bounds

Our proposal

Underlying point set of a non
optimal rectilinear drawing of K51

This is the “base” drawing that has given us the best results:
substitute each point by a Kr (for different values of r), to get a
drawing of K505. Then duplicate each point over and over, and get
a drawing of K2N ·505. Such drawings are the best (!) drawings
known of Kn for n large.

Yes, when I said “voodoo” I wasn’t being modest. . .
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Upper bounds

Our proposal

We just don’t know how to produce good candidates for optimal
rectilinear drawings of Kn
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Pseudolinear vs. Rectilinear

Circular sequences

More general than rectilinear drawings!

Circular sequences (Goodman and Pollack, 1980)

Encode all the geometrical information of an n–point set in a
sequence of

(n
2

)
permutations on n symbols

Crossing number of a point set via circular sequences
(Lovasz et al. (2004); Abrego and Fernandez (2004))

Give an exact expression for the rectilinear crossing number of a
point set in terms of parameters of its circular sequence

It’s been an invaluable tool: we’re now at a once unthinkable
position, being able to give the exact crossing number of Kn for
n ≤ 27, for instance
Every point set yields a circular sequence, but not every circular
sequence comes from a point set
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Pseudolinear vs. Rectilinear

Circular sequences

Pseudolinear drawings

A non–rectilinear drawing of Kn:

Still, not an “arbitrary” drawing. . .
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Pseudolinear vs. Rectilinear

Circular sequences

Pseudolinear drawings

We may extend each edge to a (pseudo)line, so that the result is
an arrangement of pseudolines: every two of them cross each other
exactly once:

Such a drawing is a pseudolinear drawing

Correspond bijectively with circular sequences

Every circular sequence corresponds to a pseudolinear drawing
(Goodman and Pollack, 1980)
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Pseudolinear vs. Rectilinear

Circular sequences

Rectilinear vs. Pseudolinear

Key observation

Every rectilinear drawing is also pseudolinear, but not the other
way around

Consequently. . . (the good news)

The lower bounds we prove using circular sequences are lower
bounds for rectilinear drawings

And (make it BUT) . . . (the bad news)

The upper bounds we prove using circular sequences are not
upper bounds for rectilinear drawings
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Final remarks

Conclusions

Lower bounds

The (≤ k)–edges approach took us very far — but won’t go much
further; we know for a fact it won’t go all the way.

Upper bounds

There’s (some, dim) hope for getting a full answer for the
pseudolinear crossing number of Kn, but (most likely) this will
differ from the rectilinear crossing number of Kn.

Thank you for your attention!
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