Improving QoS in Computational Grids through Schedule-based Approach

Dalibor Klusac¢ek and Hana Rudova
Faculty of Informatics, Masaryk University
Botanicka 68a, Brno 602 00
Czech Republic
{xklusac, hanka}@fi.muni.cz

Abstract

While Grid users are often interested in satisfaction of
their Quality of Service (QoS) requirements, these can-
not be satisfactory handled by commonly used gueue-
based approaches. This paper concentrates on the ap-
plication of schedule-based methods which allow both
efficient handling of QoS requirements as well as tradi-
tional machine usage objective. An incremental appli-
cation of our methods reacting on dynamic character of
the problem allows to achieve reasonable runtime. Even
more, we show that the schedule-based methods signifi-
cantly outperform queue-based approaches by means of
the weighted machine usage reflecting heterogeneity of
the resources common for the Grid environments.

A new formalized description of two schedule-based
methods is introduced to schedule dynamically arriving
jobs onto the machines of the computational Grid. Ear-
liest Gap—Edarlier Deadline First (EG-EDF) policy fills
the earliest gaps (EG) in the known schedule with newly
arriving jobs, incrementally building a new schedule. If
no gap for a coming job is available EDF policy places
the new job into the existing schedule. Tabu search
algorithm is used to further optimize the schedule. It
moves selected jobs into the earliest suitable gaps again.
Proposed methods are compared with some of the most
common queue-based scheduling algorithms like FCFS
(First Come First Served), EASY backfilling, and Flex-
ible backfilling.

Introduction

The purpose of the Grid technology is to manage large and
heterogeneous computer environment that will allow an easy
access to the Grid resources for various users, by means of
allowing them to submit their jobs into the system, guaran-
teeing them nontrivial QoS while hiding the complexity of
the system itself by providing powerful but simple interfaces
for the end user of the Grid (Foster and Kesselman 1998).
Moreover, not only users but also resource owners should be
satisfied—in this case keeping the resource usage reasonably
high is usually very important. Therefore, multi-objective
criteria have to be met. In order to meet these goals so-
phisticated and automated scheduling techniques should be

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

applied. On the other hand, Grid is highly dynamic, dis-
tributed, and heterogeneous environment so the scheduling
is an extremely difficult task if good performance, QoS or
robustness is required.

Current scheduling techniques applied in Grids are mostly
based on the queueing systems of various types which are
designed with respect to specific needs of Grid technology.
Present systems like PBS (Jones 2005), LSF (Xu 2001), Sun
Grid Engine (Gentzsch 2001), Condor (Thain, Tannenbaum,
and Livny 2005) together with complex Grid management
systems such as GridWay (Huedo, Montero, and Llorente
2005) or Moab (Clu 2008) represent de facto standard solu-
tions. Still, they are all using simple queue-based scheduling
policies.

While single objectives can often be well satisfied with
a proper queue-based policy, complex objectives including
e.g., response time, flow time, slowdown, deadlines, re-
source utilisation, etc., are hard to achieve by a queue-based
solution, especially for the common users. Nowadays, users
are often forced to cheat when looking for good performance
of their applications, e.g., by bypassing the scheduling sys-
tem through direct logging onto specific machine and start-
ing their jobs from the command line. In current systems the
concept of advanced reservation of resources is often imple-
mented to guarantee certain QoS level, however this func-
tionality is often restricted by Grid administrators since the
queue-based schedulers are unable to manage large number
of reservations efficiently. In fact, when the amount of jobs
requesting reservation exceeds certain level the system us-
age drops very quickly and a starvation of other jobs without
reservation often appears (Smith, Foster, and Taylor 2000).

In dynamic environments such as Grids, resources may
change, jobs are not known in advance and they appear while
others are running. Schedule-based approach allows precise
mapping of jobs onto machines in time. This enables us
to use advanced scheduling algorithms (Pinedo 2005) such
as local search-based methods (Glover and Kochenberger
2003) to optimize the schedule. Due to their computational
cost, these approaches were mostly applied to static prob-
lems, assuming that all the jobs and resources are known
in advance which allows to create schedule for all jobs at
once (Armentano and Yamashita 2000; Baraglia, Ferrini,
and Ritrovato 2005). CCS (Hovestadt et al. 2003) as well
as GORBA (Sii3 et al. 2005) are both advanced Grid re-

source management systems that use schedule instead of
the queue(s) to schedule workflows (GORBA), or sequen-
tial and parallel jobs while supporting the advanced reser-
vation (CCS). GORBA uses simple policies for schedule
creation and an evolutionary algorithm for its optimisation
while CCS uses FCFS, Shortest/Longest Job First policies
when assigning jobs into the schedule and a backfill-like pol-
icy that fills gaps in the constructed schedule. Both CCS and
GORBA re-compute the schedule from scratch when a dy-
namic change such as job arrival or machine failure appears.
Although it helps to keep the schedule up to date, for large
number of jobs this approach may be quite time consum-
ing as was discussed in the case of GORBA (Stucky et al.
2006). Several papers (Abraham, Buyya, and Nath 2000;
Subrata, Zomaya, and Landfeldt 2007) propose local search
based methods to solve Grid scheduling problems. The
schedule is kept valid in time without total re-computation,
however no experimental evaluation was presented in (Abra-
ham, Buyya, and Nath 2000), and (Subrata, Zomaya, and
Landfeldt 2007) does include resource changes but no dy-
namic job arrivals.

In this paper, we provide a formalized description of our
schedule-based solution. A brief description of some of the
ideas used was already given in our previous work (Klusacek
et al. 2008). Our approach allows to efficiently schedule
dynamically arriving jobs onto the machines of a compu-
tational Grid. The initial schedule is generated by a sim-
ple and fast EG-EDF policy and then periodically optimized
with the Tabu search algorithm. In comparison with other
approaches (Hovestadt et al. 2003; Siif3 et al. 2005), we use
the policy as well as local search in an incremental fash-
ion (Klusicek et al. 2008). It means that last computed
schedule is used as the starting point for building a new
and up to date schedule. This leads to a reasonable com-
putational cost since the schedule is not rebuilt from scratch.
Moreover, we propose a multi-criteria objectives which fo-
cus on providing nontrivial QoS to the Grid users, while
satisfying the system administrator’s requirements as well.
User QoS requirements are expressed by the objective func-
tion focusing on maximizing the number of jobs that meet
their deadline (Capannini et al. 2007), while system admin-
istrators needs are expressed by a machine usage criterion
commonly used in real Grids. The success of the solution
is based on an efficient method which detects and fills exist-
ing gaps in the schedule with suitable jobs. It allows us to
increase both the QoS and machine usage by limiting frag-
mentation of the processor time. Our solution was evaluated
through a set of experiments performed in the Alea simula-
tor (Klusacek, Matyska, and Rudova 2008) against typical
queue-based scheduling algorithms like FCFS, EASY back-
filling and Flexible backfilling (Techiouba et al. 2008).

Problem Description

In our study we expect fixed set of m machines but we al-
low changes in the set of jobs. As the time is running, new
jobs may appear and processing of other jobs is meanwhile
completed. Newly arriving jobs are placed into the schedule
which define where and when they will be executed. Each
job is characterized by the release date (arrival time) r; rep-

resenting the time when the job appears in the system. Job
deadline d; is understood as a desired job completion time
which should be kept. Job j has a known processing time
;5> which depends on the CPU speed of machine 4. Job also
requires I?; ; number of CPUs for its execution (2; ; > 0).
Resources are computational machines with known capac-
ity R;, representing the number of CPUs. All CPUs within
one machine have the same speed s; representing the num-
ber of operations per second. Different machines may have
different speed and number of CPUs. All Machines use the
Space Sharing processor allocation policy which allows par-
allel execution of k jobs on machine ¢ if R; > 25:1 R; ;.

Various objective functions can be considered such as
makespan (C,4,) or average flow time. Our scheduler aims
to maximize both the machine usage and the number of jobs
meeting their deadlines (Capannini et al. 2007). A higher
machine usage fulfills resource owner’s expectations, while
a higher number of non-delayed jobs guarantees a higher
QoS provided for the users. This value is represented by
the unit penalty function U = 377, U; where U; = 1 if
the job j is delayed, i.e., C; > d;. Otherwise U; is equal
to 0. Since C} represents the job completion time, the unit
penalty represents the number of delayed jobs.

Applied Approaches

In this section, we describe the two proposed schedule-based
approaches that are used to solve the considered job schedul-
ing problem. First we describe the incremental Earliest
Gap—Earlier Deadline First policy, used to create the ini-
tial schedule. Next we present the Tabu search algorithm,
which periodically optimizes the initial solution according
to the objective function. The schedule is represented as
an array of particular machine’s schedules, i.e., schedule
:= [mach_schedy, .., mach_sched,,]. Using this notation,
the schedule of machine i (i.e., mach_sched;) is denoted as
schedule[i] in the following text. Single machine’s schedule
is stored as a linear list of jobs. This list is ordered accord-
ing to the jobs’ start times. If two or more jobs in the ma-
chine’s schedule have the same start time, then the one being
assigned to the CPU with the smallest id becomes the prede-
cessor of the remaining jobs in this list and so on. Moreover,
once the scheduleli] is built, we also check whether a gap
appears next to any job. A gap is considered to be the period
of idle CPU time. It appears every time the number of cur-
rently available CPUs of a machine (w.r.t. existing schedule)
is greater than the number of CPUs requested by the job(s)
in the given time period. Gaps for the specific machine’s
schedule are stored within the same data structure as jobs—
in the linear list schedule]i].

Earliest Gap—Earlier Deadline First

EG-EDF policy is used to add newly arrived job into the ex-
isting schedule, i.e., into the schedule;y;tiq;- This allows us
to reuse existing solution so that the schedule is built incre-
mentally over time which results in shorter algorithm run-
time in comparison with re-computing of the whole sched-
ule from scratch. The policy follows the objective function
by applying a simple strategy (see Algorithm 1) that deter-

Algorithm 1 Earliest Gap—Earlier Deadline First(job)

1: schedule;pitiar = [mach_schedy, .., mach_sched,,]; schedule, e, = 0; scheduleyes; := 0; gap_found := false; k := 0;

2: fori:=0tomdo
3: if machine; is suitable to perform job then

4: if suitable gap for job was found in schedule,, e, [i] then
5: gap_found := true;
6: scheduleyey, = schedule;pitial;
7: scheduleyeq i) == place job into found gap in schedule, e, [i]; (EG strategy)
8: else if gap_found = false then
9: scheduleyey, = schedule;pitial;
10: k := index of the first joby, € scheduleyeq[i] Whose djop, > djop; (kis the index of the first job with later deadline)
11: scheduleneq, [i] := insert job into scheduley e, [i] between joby_1 and joby; (EDF strategy)
12: end if
13: if AcceptanceCriterion(schedulepest, scheduley,e,,) = true then
14: schedulepest := schedule,eq;
15: end if
16: end if
17: end for

18: return schedulepest

Algorithm 2 AcceptanceCriterion(schedulepest, scheduleyey)

1: if schedulepes; = () then
return true;
: end if

. compute makespanyes: and nondelayedpes: according to schedulepest;

: welghtmakespan = (Makespanpest — makespanpey)/ (makespanpest);
: welghtdeadiine = (nondelayed e, — nondelayedpest)/(nondelayedpest);

: welght = weightmakespan + weightdeadline;
9: if weight > 0.0 then
10: return true;
11: else
12: return false;
13: end if

2
3
4
5: compute makespanye,, and nondelayed,, ¢, according to scheduleycqy;
6
7
8

mines which particular machine from the set of all suitable
machines will execute the job. When the EG-EDF policy
finishes its execution, it places the new job into this partic-
ular machine’s schedule. The following algorithm is used.
All the suitable machines are subsequently tested whether
a suitable gap for the new job exists in their schedule. If
there are more suitable gaps in the specific machine’s sched-
ule, we always use the earliest one due to the higher proba-
bility that the job’s deadline will be met (Earliest Gap (EG)
policy). More importantly, it may not be possible to place fu-
ture jobs to these earlier gaps as the time is running and the
machine may spend its time being idle, not having a suit-
able job for the gap. If the suitable gap is found then the
job is assigned to it and the new resulting schedule is evalu-
ated according to the AcceptanceCriterion function w.r.t.
the best so far found schedulep,s;. If such gap is not found
in this machine’s schedule and no gap was found so far on
the previously tested machines, then the job is placed into
the machine’s schedule using EDF policy. Our implemen-
tation of the EDF policy subsequently goes through the list
of jobs in the scheduleyey[i] (schedule of machine) and
finds the first joby, whose deadline djop, > djop. Incom-

ing job is placed between joby_1 and jobg, shifting joby
and all later jobs in the machine’s schedule. Please note
that not all the jobs in the schedule,eq[i] have to be or-
dered by their deadline—some job(s) having arrived earlier
could have been assigned to this machine’s schedule using
the ”gap-filling” EG policy, which does not consider dead-
line order at all. This newly constructed schedule,e,, is an-
alyzed by the AcceptanceCriterion to decide whether this
solution is better then the current schedulep,s;. If this is the
case, then the schedule,,,, becomes the new schedulepest
(see line 14). Once there is some gap found in some pre-
viously tested machine’s schedule, then only the better gaps
on remaining machines are searched and EDF is never used
again (see line 8). After all suitable machines were tested
the schedulepes; is returned as the newly found solution.
AcceptanceCriterion is used to decide whether the
schedule,,.,, is better than the best so far known solution
schedulepest (see Algorithm 2). The decision is taken upon
the value of the weight (see line 9), which is computed
as a sum of the weight,,akespan and the weightgeadiine-
They express our two objectives—the machine usage and
the deadlines, respectively. When the weightmakespan 15

positive it means that the schedule,,q,, has lower makespan
than the schedulep.s;. It means that also the machine us-
age will be better!. Similarly, the positive weightgeqdiine
value means that the schedule,,.,, has lower number of de-
layed jobs (Upew < Upest). Obviously, some correction are
needed when the makespanpes: or the nondelayedp.s; are
equal to zero but we do not present them to keep the code
clear. Finally, the first line of the AcceptanceCriterion
guarantees that the scheduley.s; will be initialized correctly
for the purposes of the following iterations of EG-EDF (at
least one schedulepes; will be always found).

Tabu Search

Although the EG-EDF policy is trying to increase the ma-
chine usage and also to meet the job deadlines either by
finding suitable gaps or through EDF policy, it only focuses
on the newly arriving job. Previously scheduled jobs are
not primarily considered by EG-EDF when building a new
schedule. In such case many gaps in the schedule may re-
main which could be efficiently used by suitable jobs already
present in the schedule. We apply the Tabu search (Glover
and Laguna 1998) optimization algorithm which increases
both the machine usage and the number of non-delayed jobs.
It only manipulates the jobs prepared for execution—the
jobs already running are not affected since the job preemp-
tion is not supported. Both delayed and non-delayed jobs
are considered as candidates otherwise the diversity of the
neighbourhood drops down together with the quality of the
solution as we observed during the tests. In the proposed
solution we move “later” jobs from the end of some ma-
chine’s schedule into the earliest suitable gaps appearing in
some machine’s schedule. The idea behind this approach is
twofold. First, the filling of the early gaps helps to increase
machine usage—otherwise this gap would soon result in an
insufficient machine usage. Second, jobs from the end of
current schedule are more likely to be delayed, therefore it
is reasonable to move them forward. Moreover, once such
job is removed from its position remaining jobs in the sched-
ule may often be executed earlier which also increases the
probability that their deadline will be met.

The proposed solution is described in detail by Algo-
rithm 3. In each iteration a specific machine’s sched-
ule and one job from that schedule is selected as a can-
didate for move. The machine being selected is the one
with highest number of delayed jobs. The job being se-
lected is the last non-tabu job from this machine’s sched-
ule, i.e., job ¢ tabujops. Once the job is selected, it is
removed from its current position and we try to find a suit-
able gap where the job would fit in. This is performed by
the MoveJob function. First, the set of all the machines
is randomly permuted and then all the machines are subse-
quently tested in a loop whether a suitable gap exists in their

'If there is a gap being filled with newly arriving job, then
the weightmakespan i €qual to zero because the new job “fits”
within an existing gap and the makespan does not change. Al-
though it increases machine usage it is not recognized by the
AcceptanceCriterion algorithm. This is the reason why we pre-
fer gaps over EDF in EG-EDF policy.

schedule. If the gap is found, the job is moved to it and
the AcceptanceCriterion is computed. If this move is ac-
cepted, then M oveJob returns true and the schedulepes; is
updated with the schedule,e,, (see line 17). Otherwise, the
job is removed from the gap and the next machine’s sched-
ule is investigated w.r.t. existence of a suitable gap. This
cycle continues until a better schedule is found or until all
machines were examined. In case that no better solution
was found, then the MoveJob returns false and the job is
returned to its original position (see line 15). Finally, the
recent job is placed into the tabu;ps—so0 that it cannot be
chosen in the next few iterations—and a new iteration of
the Tabu search starts. If in some iteration the selected ma-
chine’s schedule contains only tabu jobs, it means that all of
them were selected in the previous few iterations, therefore
we add this machine into the machines,seq list, so that it
will not be chosen as the source candidate in next iterations
(see lines 10 and 3 respectively). When all machines are
present in the machines, seq, it means that we went through
all the machines’ schedules, therefore we clear the list and
start another iteration (see line 5). This guarantees that all
machines will become candidates if a sufficient number of
iterations is given.

Experimental Evaluation

In order to verify the feasibility of the EG-EDF and the
Tabu search solutions, a number of experiments have been
conducted. Since the current Grid schedulers are mostly
based on queues, the evaluation was performed by com-
paring our solutions with some common queue-based algo-
rithms such as the FCFS, the EASY backfilling (EASY-BF),
and the Flexible backfilling (Flex-BF). The EASY backfill-
ing (Skovira et al. 1996) is an optimization of the FCFS al-
gorithm, which tries to maximize the machine usage. If the
first queued job has to wait until the necessary machine(s)
become available, then other jobs from the queue that may
use the available machines are scheduled immediately, in
case that they will not delay the first waiting job. While in
the FCFS such machines would be idle, in the EASY back-
filling they are “backfilled” with suitable jobs. The Flexible
backfilling (Techiouba et al. 2008) is a modification of the
EASY backfilling where jobs are prioritized based on the
scheduler’s goals, queued according to their priority value
and then selected for scheduling in this priority-based or-
der. In this case, the priority was computed respecting the
proximity of the job deadline, job waiting time and the job
execution time. The priority of a job increases as its deadline
is approaching, time spent in the queue is growing or its ex-
ecution time is lower w.r.t. the remaining queued jobs. Job
priorities are updated at each job submission or completion
event and then new scheduling round is started.

To simulate the dynamic Grid environment we used the
Alea Simulator (Klusacek, Matyska, and Rudovd 2008),
which is an extended version of the GridSim toolkit. The
Grid was made up of 150 machines with different CPU num-
ber and speed. Since the current systems often do not sup-
port specific QoS-related requirements such as the use of
job deadlines, we were forced to create our own workload
traces since we are not aware of any publicly available trace

Algorithm 3 Tabu Search(iterations)

1: schedulepest := [mach_schedy, .., mach_sched,,]; scheduleye,, = schedulepest; tabujops = 0; machines,seq = 0;

2: for i := 0 to iterations do

3: source :=k such that: k € (1..m), machine, ¢ machinesysed, schedule,e, k] has highest number of delayed jobs;

if source = null then

continue with new iteration;
end if

A A

9: if job = null then

machines,seq := 0; (All machines were used — start a new round)

job :=last job from schedule,e,, [source] such that: job ¢ tabujops;

10: machinesyseq := machines,seq U machinesgyrce; (No non-tabu job is available in schedule, e, [source])
11: continue with new iteration;
12: endif

13: remove job from schedule, e, [source];

14: if MoveJob(job, schedulepest, scheduleye,,) = false then

15: schedulepeq, := schedulepest; (returns job to the original position);
16: else

17: schedulepest = scheduleye,; (updates the best so far found solution)
18: end if

19: tabujops = tabuops U job; (and remove oldest item if tabuqps is full)

20: end for
21: return schedulepes:

Algorithm 4 Movelob (job, schedulepest, schedulepeq)

1: Permute the list of machines to test them in random order;

2: for j :=0tom do

3: if machine; is suitable to perform job and suitable gap for job was found in scheduleye,,[j] then

4: scheduleneq,[j] = place job into found gap in scheduleneq [7];

5: if AcceptanceCriterion(schedulepest, scheduleye,) = true then

6: return true;

7: else

8: scheduley ey []] = schedulepest[j] (removes the proposed move);
9: end if
10: end if
11: end for

12: return false;

that would include job deadlines. Our simulations used five
different streams, each containing 3000 synthetically gen-
erated jobs using negative exponential distribution with dif-
ferent inter-arrival times between the jobs (Capannini et al.
2007). According to the job inter-arrival times a different
workload is generated through a simulation. The smaller
this time is, the greater the system workload is. The inter-
arrival times were chosen in a way that the available com-
putational power of the machines is able to avoid the job
queue increasing when it is fixed equal to 5 seconds. Each
job and each machine parameter was randomly generated
according to a uniform distribution?. Both sequential and
parallel jobs were simulated. However, parallel jobs were
always executed only on one machine with a sufficient num-
ber of CPUs. Each simulation was repeated 20 times with
different job attributes to obtain reliable values. The exper-

?Following ranges were used: Job execution time [500-3000],
jobs with deadlines 70%, number of CPUs required by job [1-8],
number of CPUs per machine [1-16], machine speed [200-600]

iments were performed on an Intel Pentium 4 2.6 GHz ma-
chine with 512 MB RAM.

To evaluate the quality of the schedule computed by
EG-EDF policy and Tabu search, we use different crite-
ria: the percentage of delayed jobs, the percentage of ma-
chine usage, the percentage of weighted machine usage, the
makespan, the average job slowdown, and the average algo-
rithm runtime spent by the scheduler to create a scheduling
decision.

Discussion

Figure 1 shows the percentage of jobs that failed to meet
their deadline. As expected, when the job inter-arrival time
increases, the number of delayed jobs decreases. More-
over, it can be seen that both the EG-EDF policy and the
Tabu search produced much better solutions than the Flexi-
ble backfilling, the EASY backfilling or FCFS. Tabu search
outperforms all the other algorithms. In particular, it obtains
nearly the same results as the EG-EDF policy when the sys-

tem contention is low (the job inter-arrival time equals to 5).

70

delayed jobs [%]

—m— EASY-BF
20 +1-| —&—Flex-BF
—%— EG-EDF
——Tabu Search

1 2 3 4 5
avg. inter-arrival time [s]

Figure 1: Average percentage of delayed jobs.

In Figure 2, the percentage of system usage is shown. The
schedule-based algorithms are, in general, able to better ex-
ploit the system computational resources. However, when
the system contention is low the solutions we propose ob-
tain worse results concerning the machine usage than the
queue-based techniques. In this case, the schedule is empty
for lots of machines which decreases the machine usage.
The reason for this behavior is that our algorithms—using
the schedule—prefer to put waiting jobs rather onto fast ma-
chines because they will finish them earlier than if they are
executed immediately but on a slow machine. Such situa-
tion will never occur for none of the queue-based algorithms
since they make their decisions w.r.t. the current situation
and are not able to predict future behavior as the schedule-
based solution does. Since we are dealing with heteroge-
neous machines, more realistic results are those obtained
by weighted machine usage criterion. Here the usage of
machine; is computed as machine_usage; - s; so the speed
s; of machine; is used as a weight. Therefore, the weighted
machine usage expresses the amount of utilized CPU op-
erations. As discussed in (Tang and Chanson 2000), when
a choice is to be made between two machines, it is better to
highly utilize the fast machine rather than the slow machine
since the fast machine computes much more operations in
given time than the slow one. It is important to notice that
such a scenario is not covered by the classic machine us-
age criterion where only the proportion of used and available
CPUs is measured disregarding their speed. Figure 3 shows
how the schedule-based approach significantly outperforms
the remaining queue-based algorithms. We can see that sim-
ilar effect is also clearly visible in Figure 4 representing the
makespan. Since the schedule-based methods are able to
better utilize the fast machines, more jobs are completed in
a shorter time. Again, notice that this behavior is not recog-
nizable in Figure 2.

100

=
@
o
5
e
o
=
¥
B B rrmmrmro oo
=
——FCFS
a0 1 ---EASYBF |]
—— Flex-BF
—— EG-EDF
—a— Tabu Search
75 T T T
1 2 3 4 5
avy. inter-arrival time [s]
Figure 2: Machine usage.
100
95 hansnesn R s R A AR AR A SR R AR R I SRR S RS

weighted machine usage [%]

65 11 _e—FCF3
6o 4| ™ = T —
—&—Flex-BF
55 4. —#—EG-EDF
—— Tabu Search
a0 T T

1 2 3 4 5

avg. inter-arrival time [s]

Figure 3: Weighted machine usage.

Figure 5 shows the average execution time (runtime) spent
by the scheduler to come up with scheduling decision for
one job. It is computed by measuring the system CPU time
spent at each scheduling event. The runtime for FCFS is
very low w.r.t. to EASY and Flexible backfilling for which
it grows quickly as a function of the job queue length. Al-
though the Flexible backfilling has to re-compute job priori-
ties at each scheduling event, and then has to sort the queue
accordingly, it causes minimal growth of its run time com-
pared to the EASY backfilling thanks to the application of
an efficient sorting algorithm.

Local search based algorithms are often considered to be
very time consuming. Our implementation, which exploits
an incremental approach based on the reuse of previously
computed solution, is able to guarantee a shorter and a sta-

27000

25000 ~
23000 ~
=
&
§ 21000 +
o
=
18000
—m— EASY-BF
ATO00 Fmmmmm e —&— Flex-BF
—— EG-EDF
—e— Tabu Search
15000 T T

1 2 3 4 5
avg. inter-arrival time [s]

Figure 4: Makespan (compare proportion with Figure 3).

200
—eFCFS
180 st e R R R —=— EASY-BF
—&—Flex-BF

_ LR Rt o e ——EG-EDF
oy
S0 e N N e s —e—Tabu Search |
O
=
T
@
E
e i il
=
=) F e NS
5
[=
0 N T
o
&

e

20 g ST kichlle oY e MG R R

H ¥ oy
0 + . + + . * . +
1 2 3 4 5

av. inter-arrival time [s]

Figure 5: Average algorithm runtime per job.

ble execution time w.r.t. the other algorithms. In particular,
EG-EDF policy is fast and it always generates acceptable
schedule, so we can stop Tabu search optimization at any
time if prompt decisions are required, or even do not use it
at all.

Figure 6 shows the average job slowdown. It is computed
as (T'w+ T'e) /Te, with T'w being the time that a job spends
waiting to start its execution, and 7'e being the job execu-
tion time (Mu’alem and Feitelson 2001). This shows us how
the system load delays the job execution. As expected, the
higher the system contention is, the higher the job slow-
down is. In this case better results were obtained by the
Tabu search, which are nearly the same as those obtained by
the Flexible backfilling algorithm. Unlike the Flexible back-
filling, the slowdown was not explicitly considered neither

8
——FCFS

Fihs e e s e e e e —=—EASY BF
—&— Flex-BF

Bl e o v v e e M e e S R e e ——EG-EDF
—+— Tabu Search

(&)
L

avg. job slowdawn
LS

avg. inter-arrival time [s]

Figure 6: Average job slowdown.

in EG-EDF nor in the Tabu search. Still, the ”backward to
forward” gap-filling strategy was useful even in this case.

Conclusion and Future Work

We exploited the schedule-based approaches to efficiently
address the QoS requirements of the Grid users towards the
processing of their jobs. Also the overall Grid utilization
was emphasized to address the Grid resource owners’ point
of view. The schedule-based algorithms demonstrated sig-
nificant improvement when decreasing the number of de-
layed jobs while keeping the machine usage high. This
would not be possible without the application of an effective
gap-filling method. The Tabu search algorithm proved to be
more successful in decreasing the number of delayed jobs
over the Flexible backfilling—on the other hand, precise job
execution time was known in this case so the advantage of
the schedule-based solution took effect. We showed that the
schedule-based solution with the local search algorithm such
as Tabu search is a usefull technique since it can easily fol-
low the incremental approach to keep the algorithm runtime
stable and low. From this point of view, both the EASY and
the Flexible backfilling are more time consuming since their
runtime is growing with the size of the queue more quickly.

In the future, we would like to extend our current model
with a network simulation and also include a certain level of
uncertainty such as the job execution time estimations or dy-
namic resource changes. Next, we will study their effect on
the performance of the schedule-based methods. In Grids,
the uncertainty and imprecision of information together with
dynamic changes represent more realistic scenario. Usu-
ally, this is not a crucial issue for a lot of queue-based al-
gorithms because they are designed to deal with dynamic
changes and often require a very limited amount of informa-
tion at the cost of no or very limited QoS guarantee. Here
the schedule-based approach and generally every technique
that aims to guarantee certain behavior—e.g., those using

advanced reservation—relies on the precision of available
information much more. Without that, the reliability of the
computed schedule is limited, thereby some action such as
local change or limited rescheduling must be done to keep
the schedule up to date when e.g., the job execution time
estimates will not meet the real job execution time.

Acknowledgments

This work was kindly supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic under the re-
search intent No. 0021622419, by the Grant Agency of the
Czech Republic with grant No. 201/07/0205, and by the EU
CoreGRID NoE (FP6-004265).

References

Abraham, A.; Buyya, R.; and Nath, B. 2000. Nature’s
heuristics for scheduling jobs on computational Grids. In
The 8th IEEE International Conference on Advanced Com-
puting and Communications (ADCOM 2000), 45-52.

Armentano, V. A., and Yamashita, D. S. 2000. Tabu
search for scheduling on identical parallel machines to
minimize mean tardiness. Journal of Intelligent Manufac-
turing 11:453-460.

Baraglia, R.; Ferrini, R.; and Ritrovato, P. 2005. A
static mapping heuristics to map parallel applications
to heterogeneous computing systems: Research articles.

Concurrency and Computation: Practice and Experience
17(13):1579-1605.

Capannini, G.; Baraglia, R.; Puppin, D.; Ricci, L.; and
Pasquali, M. 2007. A job scheduling framework for large
computing farms. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage
and Analysis (SC’07).

Cluster Resources. 2008. Moab workload
manager administrator’s guide, version 5.1.0.
http://www.clusterresources.com/products/mwm/docs/.

Foster, 1., and Kesselman, C. 1998. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann.

Gentzsch, W. 2001. Sun Grid Engine: towards creating a
compute power grid. In Proceedings of the first IEEE/ACM
International Symposium on Cluster Computing and the
Grid, 35-36.

Glover, F. W., and Kochenberger, G. A., eds. 2003. Hand-
book of metaheuristics. Kluwer.

Glover, F. W., and Laguna, M. 1998. Tabu search. Kluwer
Academic Publishers.

Hovestadt, M.; Kao, O.; Keller, A.; and Streit, A. 2003.
Scheduling in HPC resource management systems: Queu-
ing vs. planning. In Feitelson, D. G.; Rudolph, L.; and
Schwiegelshohn, U., eds., 9th International Workshop,
JSSPP 2003, volume 2862 of LNCS, 1-20. Springer.

Huedo, E.; Montero, R.; and Llorente, I. 2005. The
GridWay framework for adaptive scheduling and execution

on Grids. Scalable Computing: Practice and Experience
6(3):1-8.

Jones, J. P. 2005. PBS Professional 7, administrator guide.
Altair.

Klusacek, D.; Rudova, H.; Baraglia, R.; Pasquali, M.; and
Capannini, G. 2008. Comparison of multi-criteria schedul-
ing techniques. In Integrated Research in Grid Computing.
Springer. To appear.

Klusacek, D.; Matyska, L.; and Rudova, H. 2008. Alea
— Grid scheduling simulation environment. In 7th Inter-
national Conference on Parallel Processing and Applied
Mathematics (PPAM 2007), volume 4967 of LNCS, 1029—
1038. Springer.

Mu’alem, A. W., and Feitelson, D. G. 2001. Utiliza-
tion, predictability, workloads, and user runtime estimates
in scheduling the IBM SP2 with backfilling. I[EEE Transac-
tions on Parallel and Distributed Systems 12(6):529-543.

Pinedo, M. 2005. Planning and scheduling in manufactur-
ing and services. Springer.

Skovira, J.; Chan, W.; Zhou, H.; and Lifka, D. A. 1996.
The EASY - LoadLeveler API Project. In IPPS ’96: Pro-
ceedings of the Workshop on Job Scheduling Strategies for
Farallel Processing, 41-477. Springer.

Smith, W.; Foster, I.; and Taylor, V. 2000. Scheduling
with advanced reservations. In International Parallel and
Distributed Processing Symposium (IPDPS ’00).

Stucky, K.-U.; Jakob, W.; Quinte, A.; and Sii3, W. 2006.
Solving scheduling problems in Grid resource manage-
ment using an evolutionary algorithm. In Meersman, R.,
and Tari, Z., eds., OTM Conferences (2), volume 4276 of
LNCS, 1252-1262. Springer.

Subrata, R.; Zomaya, A. Y.; and Landfeldt, B. 2007.
Artificial life techniques for load balancing in computa-
tional Grids. Journal of Computer and System Sciences
73(8):1176-1190.

SiiB3, W.; Jakob, W.; Quinte, A.; and Stucky, K.-U. 2005.
GORBA: A global optimising resource broker embedded
in a Grid resource management system. In Zheng, S. Q.,
ed., International Conference on Parallel and Distributed
Computing Systems, PDCS 2005, 19-24. IASTED/ACTA
Press.

Tang, X., and Chanson, S. T. 2000. Optimizing static job
scheduling in a network of heterogeneous computers. In
ICPP °00: Proceedings of the Proceedings of the 2000 In-
ternational Conference on Parallel Processing, 373 — 382.
USA: IEEE Computer Society.

Techiouba, A. D.; Capannini, G.; Baraglia, R.; Puppin, D.;
and Pasquali, M. 2008. Backfilling strategies for schedul-
ing streams of jobs on computational farms. In Dane-
lutto, M., and Getov, V., eds., Making Grids Work. USA:
Springer.

Thain, D.; Tannenbaum, T.; and Livny, M. 2005. Dis-
tributed computing in practice: the Condor experience.
Concurrency - Practice and Experience 17(2-4):323-356.
Xu, M. Q. 2001. Effective metacomputing using LSF mul-
ticluster. In CCGRID ’'01: Proceedings of the Ist Inter-
national Symposium on Cluster Computing and the Grid,
100-105. IEEE Computer Society.

