
Integrated Modelling for Planning, Scheduling, and
Timetabling Problems*

Roman Barták1, Hana Rudová2

1 Charles University, Malostranské námìstí 2/25, Praha, Czech Republic
e-mail: bartak@kti.mff.cuni.cz

2 Masaryk University, Botanická 68a, Brno, Czech Republic
e-mail: hanka@fi.muni.cz

Abstract. Planning, scheduling, and timetabling problems are typically solved
using different techniques despite the fact that all these areas seem very similar
and they are definitely connected. In this paper we propose a generic model
covering scheduling and timetabling problems as well as some problems from
planning under time and resource constraints. Our model is motivated by real-
life problems and our goal is to cover various aspects of these problems in the
common model.

Keywords: scheduling, timetabling, planning, modelling, integration

1 Introduction

Despite the fact that planning, scheduling, and timetabling are closely related
problems, they are solved using rather different techniques. Sometimes there is even
confusion to which category a given problem belongs because the notions of
planning, scheduling, and timetabling have slightly different meaning in different
environments. For example in industry, the notion of planning often means long-
horizon, low-resolution form of scheduling, i.e., activities are assigned to departments
rather than to machines and timing is in months rather than in minutes (see [1] for a
deeper comparison). This is sometimes called planning under time and resource
constraints [12] to distinguish it from pure AI planning problems. The role of
planning under time and resource constraints is increasing and because these planning
problems are closely related to scheduling there exist tendencies to integrate both
approaches [1,16,18] as a special track on such integration at the 6th European
Conference on Planning (2001) shows. On the other hand, there is an attitude to keep
resource scheduling separated from planning [19] supported by the idea of using up-
to-date special algorithms to solve the problems separately and propagating the results
using, e.g., a waterfall model. In [1], we argued for the methods based on the
integration because we believe that such integration is more natural from the user

* Research supported by the Grant Agency of the Czech Republic under the contract number

201/01/0942.

point of view. Moreover, recent development of constraint satisfaction technology
provides the tools that can be used to model and solve planning, scheduling, and
timetabling problems [2,5,13,15,20].

In this paper, we describe a first attempt to model various aspects of planning,
scheduling, and timetabling problems using a single unified model. This model could
be something like PDDL [10] for the AI planning problems, but we do not specify a
formal modelling language at this stage. Moreover, we do not cover whole AI
planning; we restrict ourselves to planning under time and resource constraints (even
if in some sense time and resources can be omitted from the model). More precisely,
our model is intended to cover real-life scheduling and timetabling problems with
some planning features. Our primary goal is to provide a generic model where the
user can describe a real-life scheduling/timetabling problem. The basic notion in the
model is an activity, activities are grouped in tasks and they are allocated to resources.
At this stage we concentrate on expressiveness of the model rather than on solving a
particular scheduling/timetabling problem. This model is indented to serve as a bridge
between various solving techniques. At subsequent stages, we expect to provide rules
that (semi-) automatically recommend a solving technique depending on the
specification of the problem in this model.

The paper is organised as follows. We first define the notions of planning,
scheduling, and timetabling as we use them in this paper and we sketch the main
differences between these notions. Then we describe the motivation behind our
research, i.e., providing a model integrating planning, scheduling, and timetabling.
The main part of the paper contains a description of the model, namely specification
of actions, resources, and tasks, as well as the description of objectives. We conclude
with highlighting the advantages of our model and describing a future work.

2 Preliminaries

Before starting the specification of the model, let us first briefly define the notions of
planning, scheduling, and timetabling. As we mentioned in the introduction, meaning
of these terms could be slightly different depending on what community defines them.
Moreover, the border between them is fuzzy so it may be even ambiguous to classify
a particular problem. In this section we try to extract the main features that
differentiate between traditional planning, scheduling, and timetabling. This helps us
to classify our model in the traditional terminology.

Planning. Let us start with the definition of planning that is very close to general
problem solving. The traditional AI planning tackles the problem of finding plans to
achieve some goal, i.e., finding a sequence of actions that will transfer the initial
world into one in which the goal description is true. It means that a description of the
initial world, the (partial) specification of the desired world and the list of available
actions make the input of the planner. A solution is a sequence of actions that leads
from the initial world description to the goal world description and it is called a plan.
Note that the structure of the plan could be more general than a simple sequence, say
a directed graph where nodes are marked by actions and the arcs describe time

precedence between the actions. In planning, neither the structure of the plan nor the
actions in the plan are known in advance so the task is to generate the actions and to
connect them into the structure forming the plan. This structure can not be arbitrary;
the actions in the plan must follow some rules defined for example via pre-conditions
and post-conditions of the actions (e.g., STRIPS rules). The notion of resource is not
used explicitly in traditional planning. However, the use of resources could be
encoded in pre-conditions and post-conditions of the actions (e.g. empty hand in the
block world problem). Also, a relative time is used during planning only, e.g., an
action A precedes an action B without particular specification when the given action
must be performed. Recently, planning is becoming more aware of resources and
time, so we are speaking about planning under time and resource constraints.

Scheduling. It may seem that planning under time and resource constraints is
equivalent to the traditional scheduling but it is not true. The traditional scheduling
task deals with the exact allocation of activities to resources (or resources to
activities) over time respecting precedence, duration, capacity, and incompatibility
constraints. The set of activities, the list of resources, and the specification of the
constraints make the input to the scheduler. The output of the scheduler consists of the
exact allocation of the activities to the resources over time. The main difference
between scheduling and planning under time/resource constraints is that in
scheduling, we know the set of activities in advance while in planning we have to
generate the activities. This difference also explains the major interaction between
traditional planning and scheduling: first we plan/generate the set of activities and
then we schedule/allocate these activities to resources. In [1], we proposed to
integrate both planning and scheduling such that the activities can be introduced
during scheduling.

Timetabling. Timetabling stays apart from the "fight" between planning and
scheduling and it acts like a completely separate subject (even with a separate
conference). However, when we look in detail at timetabling, we find it to be very
close to scheduling. As pointed out by Wren [21] we can even say that timetabling is
a special case of scheduling. Let us take a look on his definition of timetabling: it is
the allocation, subject to constraints, of given resources to objects being placed in
space-time, in such a way as to satisfy as nearly as possible a set of desirable
objectives. In comparison with scheduling, we can see that the importance of the
resource allocation is restrained. Also, the presented objective function emphasises
different criteria than the cost optimisation over resources what is typical for
scheduling. Important difference is that there are only rare direct relations between
activities, most of the relations are expressed via resources (e.g., two activities can not
be allocated to a single time slot). Thus timetabling uses different techniques to solve
the problems, but similarities to scheduling are evident. In [14], we studied
timetabling from a general point of view.

3 Motivation

Despite the differences among traditional definitions of planning, scheduling, and
timetabling, relationship among these subjects is evident. Moreover, in practice it is
quite frequent that a given problem is positioned at the border between planning and
scheduling (since now we will include timetabling in scheduling, if no special feature
of timetabling is required). It means that we have to solve both planning and
scheduling sub-problem to get a final solution. Typically, this is done separately as
described above but it could be done within a single system as we proposed in [1].
The approach separating planning and scheduling usually requires two more or less
independent models, which makes the system less transparent from the user point of
view ("I have a single problem why should I use two different applications to solve
it?"). So first motivation behind our proposal is to use a single model to describe the
problem. An integrated planner and scheduler can then use this model directly or the
model can be converted to separate sub-models that are then solved using different
technologies. Using a single model of the problem makes the modelling easier for the
user, as he or she is shaded off from the implementation details. Note that we do not
describe at this stage how to solve our generic model, this will be the subject of our
future research. We expect to use constraint programming technology as the main
solver that can integrate other techniques from traditional scheduling and planning.
Some ideas of such solver can be found in [2,3].

Using a single generic model can also simplify solving a set of similar problems.
When we are exposed to a particular problem, we can propose a special
planner/scheduler to solve the problem. This is a current practice in companies like
Cosytec (www.cosytec.com) that provide highly customised solutions, i.e., a
dedicated system is designed for every customer. Another approach, used e.g. by Parc
Technologies (www.parc-technologies.com), is to provide software covering a
problem area rather than a single customer. The customer then describes/models the
problem within the system, that is capable to solve all the problems in a given area.
Our intention is to provide even more general model that allows description of
planning/scheduling problems from different areas. At this stage, we would like to
cover the core features of various planning/scheduling/timetabling areas. User-defined
constraints can be added to tune the model to a particular problem in the next step.

There is another aspect of defining a generic model describing various problems -
such unified model can help in the classification of the problems. There exists a
known classification of scheduling problems using the triple machine environment |
job characteristics | optimality criterion by Graham et al. (e.g., see [8]) but this
classification is rather academic and it is hard to fit a real-life problem to one of these
classes. Moreover note that this classification does not include a language to specify a
particular problem. We would like to provide a framework where the user describes
the real problem and using this description we could classify (more or less
automatically) this problem or its parts to known categories. Subsequently, this
classification can help in the selection of the suitable solving technology. Moreover,
the unified model helps in the design of benchmarks when the language for
description of the model will be provided. Such language, PDDL [10], is used in
planning to describe the problem in a unified way. In the timetabling community,
there is also effort to define a standard format for the problem specification, e.g., the

language called STTL [11]. Taking into account both standard approaches from the
independent areas of planning and timetabling, we would like to get a new general
specification for the combined planning and scheduling problems.

4 The Model

In the proposed model, we try to extract the common features of planning (under time
and resource constraints), scheduling, and timetabling. We started from real-life
problems of scheduling (integrated with planning) [1,2,3] and timetabling [14, 17]
rather than from academic definitions. Currently, we would like to cover the core
features of these problems; user-defined constraints can be added later. Our ambition
is not to replace either PDDL or STTL as our problem area is integrated planning and
scheduling (these languages cover the areas of AI planning and timetabling
separately). Also, no formal language is provided there yet, we rather describe what
features such model should cover and how.

There are three parts of the model: activities, tasks, and resources. The basic
problem is to allocate activities to resources that are required by the activities.
Moreover, the activities must be chosen such that the tasks are fulfilled. Tasks and
resources describe the allowed structure of activities in the final plan/schedule, they
also define timing of activities (which activities must precede other activities). Note
that we allocate activities to particular time too; the notion of time is hidden in the
definition of tasks and resources.

Fig. 1. Final schedule in the form of a resource-oriented Gantt chart. Rectangles represent the
activities, the horizontal axis describes time and the vertical axis describes the resources. Arcs
connect the activities belonging to a single task (they represent supplier-consumer relation).

4.1 Activities

Activity can be easily identified in planning, scheduling, and timetabling problems,
even if the different notions are used to name this object there. Planning calls it
action, traditional scheduling often considers operation, and timetabling works with
meeting, course, etc. Activity in scheduling/timetabling is typically specified by its

duration. Actions in planning have usually assigned no duration if we are not
working with time. Still some duration can be assigned to the action because it takes
some time to perform it. When the duration is not relevant it can be easily set to zero.
So, we have an activity as the basic scheduled/planned object and its duration as the
first common parameter. Note also that the duration can be variable, e.g., it can be
constrained by the resource that processes the activity.

It is possible that the activity can be processed at any time (perhaps depending on
other activities, see description of tasks and resources) but in many problems time
windows are defined to specify when the activity can actually be processed. In
traditional scheduling, a release date and a deadline can be defined1. It means that the
activity can not start before the release date and can not finish after the deadline. The
release date and the deadline define a single time window for the activity, we can
allow more time windows to be defined for the activity. For example, some activities
can be processed only in specified time windows due to security or other reasons
(e.g., noisy activities can be processed at day time only).

Fig. 2. Activity and its parameters at glance.

Parameters of the activity can distinguish between problems of different type. In
Table 1, we show what are the typical activity parameters for planning, scheduling,
and timetabling problems.

Planning Scheduling Timetabling
Duration no yes mostly fixed
Time windows no yes sometimes

Table 1. Comparison of planning, scheduling, and timetabling using the activity parameters (by
planning we mean planning without time and resource constraints).

4.2 Resources

Activity is typically allocated to a resource(s), so it consumes some capacity of the
resource. We distinguish resources of two kinds: renewable (or reusable) and
consumable.

1 A release date and a deadline are defined for jobs (tasks) in traditional scheduling. However,

we can define them for operations (activities) to increase the generality of the model.

activity

duration

time window

time

release date deadline

A renewable resource is used by the activity, so when the activity is processed, it
consumes the capacity of the resource, but as soon as the activity finishes, the
capacity is returned back to the resource (see Figure 3 part a). Machines and
classrooms are typical examples of the renewable resource.

A consumable resource vanishes when the activity is executed, i.e., capacity of
the resource is not restored when the activity finishes (see Figure 3 part b). Fuel is a
typical example of the consumable resource. Note that in addition to activities that
consume a resource, we can also define activities that produce a resource, e.g.,
refuelling. In this case, available capacity of the resource is increased when the
activity is finished (see Figure 3 part c).

Fig. 3. Basic scenarios of consuming/producing resource capacity (dashed lines indicate the
start and the end of the activity). Note that other scenarios can be designed as well, e.g., a
continuous change.

To model the above scenarios of consuming/restoring a resource, we need two
parameters of the resource: a capacity and an initial level. The initial level describes
amount of the resource available at the schedule start. This parameter is useful for
consumable resources, in case of renewable resources, the initial capacity equals to
the capacity.

The capacity restricts the number of activities that can be processed at a renewable
resource at the same time. In case of a consumable resource, this parameter may
describe the size of a fuel tank, etc. Note that the capacity can be set to the supreme
meaning no capacity restriction. On the other hand, the capacity can be set to 1 (we
expect a discrete domain) meaning that only one activity can be processed at given
time. Such resource is called unary and we are speaking about disjunctive scheduling.
When the capacity is higher than 1, i.e., more activities can be processed together,
then scheduling is called cumulative.

time

fr
ee

 c
ap

ac
ity

a) renewable resource

time

fr
ee

 c
ap

ac
ity

b) consumable resource -
consuming

time

fr
ee

 c
ap

ac
ity

c) consumable resource -
producing

For each activity and each resource that can process the activity, we define an
activity capacity consumed/produced by the activity. The activity capacity is simply
an integer (we are working with a discrete domain), positive capacity means that the
activity consumes the resource, negative capacity means that the activity produces the
resource. So for each activity we have a group of couples (Capacity, Resource)
describing the capacity requirement of the activity when processed by the Resource.
We call this group an alternative resource group.

Until now, we expected that the activity is allocated to exactly one resource
selected from the alternative resource group. This could be rather restrictive in some
problems where more resources per activity are required. For example, a classroom, a
teacher, and special equipment (like a projector) must be assigned to a course in
timetabling [14, 17]. Thus, we can define a set of alternative resource groups for
each activity [14]. Then, exactly one resource is selected from each group to process
the activity. Note that the duration parameter and time windows are unique for the
activity, i.e., even if several resources process the activity, duration of the activity is
identical at each selected resource.

Resource capacity restricts the number of activities that can be processed at the
same time. In the following example, we show that we need an additional mechanism
restricting which activities can be processed together. Let us assume there is a bath
that can galvanise metal items. The capacity of the bath is large enough to include
several items but there is a restriction that only items of the same metal can be
galvanised together. To solve this problem, we can introduce a compatibility
constraint. There is a set of activities that can be processed by a given resource (this
set can be derived from the alternative resource groups). We assign a type to each
activity in this set; note that the activity may have different types in different
resources. Now, the compatibility constraint says that only the activities with the
identical type can be processed at the same time (in the above example, type is
equivalent to metal).

Activities can be allocated to the resource arbitrary, we call it parallel processing
(Figure 4 part a). However, sometimes a more restricted alignment of the activities is
required, namely the activities that are processed together must start at the same time
and they must end at the same time. Then we are speaking about batch processing
(Figure 4 part b)2.

Fig. 4. Parallel vs. batch processing (rectangles describe activities).

2 Our definition of batch processing corresponds to p-batching problems in traditional

scheduling [7] with the restriction that we require all the activities in the batch to have
identical duration. In s-batching problems, the batch is defined by a sequence of activities.

time

re
so

ur
ce

time

re
so

ur
ce

transition time

a) parallel processing b) batch processing

Compatibility constraint described in the previous paragraph plays an important role
in batch processing. Type of all activities processed together in a single batch can be
seen as a type of the batch. We can then define a special transition time between
subsequent batches, sometimes called a set-up time. This transition time is dependent
on type of both batches so a simple table can describe the transition times between
each pair of types. If the transition is not allowed then the supreme is used as a
transition time. Note also that the transition time from A to B can be different from
the transition time from B to A, i.e., a complete table is necessary.

In Table 2, we show what is the difference between scheduling and timetabling
when resource features are compared.

Scheduling Timetabling
Renewable resources yes yes
Consumable resources yes no
Capacity constraint yes often unary
Compatibility constraint new no
Batches and transitions new definition no

Table 2. Comparison of scheduling and timetabling using resources (AI planning is not
included as it does not use resources; planning with time and resources has similar nature as
scheduling).

4.3 Tasks

Activities in the problem are often dependent on each other, e.g., they are grouped in
a task (in traditional scheduling we use the notion of job). Task describes the relations
among the involved activities, e.g., the precedence relations. We propose to define a
task as a directed AND-OR graph called the task graph: vertices are marked by
activities and arcs describe precedence (and other) relations. AND branching means
that a given activity must be preceded/followed by all the connected activities; OR
branching means that one of the predecessors/successors must be selected, i.e., OR
branches describe alternatives. A precedence relation defined by an arc says than the
first activity must be finished before the second activity starts. Also, such relation can
be more constrained, e.g., exact amount of time between the activities is specified (see
Figure 5). To keep the task graph connected we introduce a special node called root
that has no activity assigned (see Figure 5). The root node is connected to selected
activities such that it is a part of all alternative solution sub-graphs. In the root we can
keep some global information about the task, e.g., the maximal duration between the
start of the earliest activity in the task and the end of the latest activity3.

The OR branches introduce alternatives in the definition of the task. To fulfil
(solve) the task we have to select a sub-graph of the task graph that includes the root
node and represents one of the alternatives (in the standard meaning of AND-OR
graphs).

3 This, sometimes called a validity time, is useful to model problems in food industry etc.

Fig. 5. Task in timetabling may express alternative composition of lectures in the course, e.g.,
course with 6 hours per week can be taught as two 3 hours lectures taught on
Monday+Wednesday, Tuesday+Thursday, or Wednesday+Friday or three 2 hours lectures
taught on Monday, Wednesday, and Friday.

The structure of the task graphs can identify to which category a particular problem
belongs. In timetabling, the task graph is typically represented by a single activity
(course/meeting) or a short sequence of activities. In Figure 5, we show a more
complex structure of the task graph that contains two alternatives. When this case
appears in practice, one of the alternatives is usually selected before we start solving
the problem. Here we present a more general concept where an alternative can be
selected during the course of problem solving.

In traditional scheduling, the task graph usually consists of a sequence of actions
(operations). More precisely, in job-shop and flow-shop scheduling, every task
consists of a sequence of activities (see Figure 6, part a). In open-shop scheduling,
there are no precedence relations among the activities and so a task graph can be
expressed as a root node connected to the activities (see Figure 6, part b). Note that
this connection is an AND-branching − in traditional scheduling (as well as in
traditional timetabling) there are no OR-branches, i.e. no alternatives in the structure
of the task. Typically the alternatives are resolved during planning, so traditional
scheduling/timetabling is free of alternatives in the task definition4.

Fig. 6. Basic structures of the task in traditional scheduling.

4 There are alternatives in traditional scheduling/timetabling, for example alternative resources

to process a given activity. It is different from the structure of alternative activities in the
task, though.

3 hours (Mo/Tu/We)

2 hours (Mo) 2 hours (We) 2 hours (Fr)

3 hours (We/Th/Fr)

one day in between

rootOR

AND

a) job-shop/flow-shop scheduling b) open-shop scheduling

c) A-structure d) V-structure

In addition to the basic structures of the task, i.e., a sequence of activities, and a set of
activities with no precedence relations, there exist two more basic structures of the
task derived from the real-life production: A-structure (Figure 7, part c) and V-
structure (Figure 7, part d). Task with the A-structure describes a production of a
single product from several parts (say construction of a car). Task with the
V-structure describes the processing of a raw material to several products (e.g., in
petroleum refinery). Note that no alternatives appear in all above structures. In
traditional scheduling, A-structure and V-structure is defined over the tasks (jobs)
rather than over the activities (operations) and even more complex structures
consisting of parallel and serial compositions are supported there [8]. Still all these
structures contain neither alternatives (OR-branches) nor cycles. Because our model
supports both these features, we believe it to be more general than traditional
scheduling models. In Figure 7 we show a more realistic task graph motivated by real
production scheduling that includes both alternative production sequences and some
form of cycling.

Fig. 7. Task in production scheduling describes the production process. Notice the two
alternative branches in production and a cycle to re-heat the product.

In planning, the task graph is usually not given explicitly but it is described via e.g.
STRIPS rules. This is because the whole task graph for planning problems could be
huge, so the planning problem is to generate and search a narrow part of the task
graph and to find a solution sub-graph there. In the Graphplan algorithm [6], a
planning graph similar to our task graph is defined. In the planning graph, the
activities interleave with propositions and the resulting plan consists of a sequence of
activities while our task graph supports a more complex structure of the plan. Still we
can say that in some sense our definition of the task graph corresponds to a solution of
the planning problem that contains alternatives.

There exist scheduling algorithms that can tackle the problems containing
alternatives in the task graph. In [4], an algorithm for scheduling alternative activities
was proposed. This algorithm can be used if the task graph is given explicitly, there
are not too many alternatives, and there are no cycles. If the number of alternatives is
large in comparison to the final plan then this approach is less efficient. Moreover, if
there are cycles in the graph then a more dynamic solving approach is required. In [3],
we proposed such an approach based on a slot representation for solving problems
described using a resource-oriented model.

prepare

process

process&test

heat
OR

test
rootOR≤ 5 hours

> 5 hours

4.4 Objectives

The proposed model consists of activities that are allocated to resources and that are
grouped in tasks. A group of activities is selected from each task graph and these
activities are allocated to resources. Resource constraints (capacity, etc.) as well as
task constraints (precedence etc.) must be satisfied. We call this problem a feasibility
problem because the goal is to find a feasible plan/schedule/timetable. We should
also mention that we expect that the tasks are independent at this stage, i.e., there is
no direct relation among them. The constraints among activities of different tasks are
derived from sharing the same resource only. General relations among the activities of
different tasks can be modelled via their integration into a joint task.

In many cases, the problem is not to find any schedule but a good schedule. This
type of problem is usually called an optimisation problem. In traditional scheduling,
there exist several objective functions to describe a quality of the schedule, e.g.,
minimising makespan, minimising tardiness, etc. (see [8] for details). Timetabling
typically differs from scheduling in the objective function. For example we are
expected to maximise the number of fulfilled tasks or to maximise satisfaction of soft
constraints [17]. The proposed model is ready to support various objective functions;
the description of them is out of scope of this paper however.

5 Conclusions and Future Works

This paper describes neither a new planning/scheduling/timetabling algorithm nor a
particular problem from these areas. We rather concentrate on extracting key common
features of planning, scheduling, and timetabling and on encapsulating these features
into a unified model. The main contribution of this paper is presenting different
concepts in a single framework. We generalised some modelling ideas behind
resources and we believe that our concept of task as an AND-OR graph is new to
scheduling and timetabling.

Our intention is not to propose another academic model but our modelling
approach is motivated by real-life problems. Still we want to describe these problems
formally, which gives us a tool for further studies of the real-life problems. Thus, our
subsequent research will cover fitting the proposed model into existing frameworks
for planning, scheduling, and timetabling. Our ambition is to design a formal
descriptive language for specifying various real-life problems at the border of
planning and scheduling. We also plan to show how other real-life problems can be
modelled using our framework. The ultimate goal is to propose a mechanism for
solving the problems defined in our model, e.g., by partitioning them into sub-
problems that can be solved using existing techniques.

6 References

[1] Barták R.: On the Boundary of Planning and Scheduling: A Study. In Proceedings of the
18th Workshop of the UK Planning and Scheduling SIG, Manchester, pp. 28-39, 1999.

[2] Barták R.: Dynamic Constraint Models for Planning and Scheduling Problems. In New
Trends in Constraints, LNAI 1865, Springer Verlag, pp. 237-255, 2000.

[3] Barták R.: A Slot Representation of the Resource-Centric Models for Scheduling
Problems. In Proceedings Dynamic Constraint Models for Planning and Scheduling
Problems. In Proceedings of the ERCIM Workshop on Constraints, Padova, 2000.

[4] Beck J.Ch. and Fox M.S.: Scheduling Alternative Activities. In Proceedings of AAAI’99,
USA, pp. 680-687, 1999.

[5] Binh Do M. and Kambhampati S.: Solving planning-graph by compiling it into CSP. In
Proceedings of AIPS 2000, pp. 89-91, 2000.

[6] Blum A. and Furst M.: Fast Planning Through Planning Graph Analysis. In Artificial
Intelligence 90, pp. 281-300, 1997.

[7] Brenner M.: A Formal Model for Planning with Time and Resources in Concurrent
Domains. In Proceedings of IJCAI-01 Workshop Planning with Resources, Seattle, 2001.

[8] Brucker P.: Scheduling Algorithms. Springer Verlag, 2001.

[9] Erol K., Hendler J., and Nau D.: UMCP: A Sound and Complete Procedure for
Hierarchical Task-Network Planning. In Proceedings of 2nd International Conference on
AI Planning Systems, pp. 249-254, 1994.

[10] Ghallab M., Howe A., Knoblock C., McDermott D., Ram A., Veloso M., Weld D.,
Wilkins D.: PDDL - The Planning Domain Definition Language, Tech Report CVC TR-
98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[11] Kingston J.H.: Modelling Timetabling Problems with STTL. In Proceedings of The
Practice and Theory of Automated Timetabling, LNCS 2079, Springer Verlag, pp. 309-
321, 2001.

[12] Koehler J.: Planning under Resource Constraints. In Proceedings of 13th European
Conference on Artificial Intelligence, Brighton, pp. 489-493, 1998.

[13] Laborie P.: Algorithms for Propagating Resource Constraints in AI Planning and
Scheduling: Existing Approaches and New Results. In Proceedings of 6th European
Conference on Planning, Toledo, 2001.

[14] Müller T., Barták R.: Interactive Timetabling. In Proceedings of the ERCIM Workshop
on Constraints, Prague, 2001.

[15] Nareyek A.: Structural Constraint Satisfaction. In Proceedings of AAAI-99 Workshop on
Configuration, 1999.

[16] Nareyek A.: AI Planning in a Constraint Programming Framework. In Proceedings of 3rd

International Workshop on Communication-Based Systems, 2000.

[17] Rudová H.: Soft Scheduling. In Proceedings of the ERCIM Workshop on Constraints,
Prague, 2001.

[18] Smith D.E, Frank J., and Jónsson A.K.: Bridging the Gap Between Planning and
Scheduling. In Knowledge Engineering Review, 15(1), pp. 61-94, 2000.

[19] Srivastava B. and Kambhampati S.: Scaling up Planning by teasing out Resource
Scheduling. Technical Report ASU CSE TR 99-005, Arizona State University, 1999.

[20] Van Beek P. and Chen, X.: CPlan: A Constraint Programming Approach to Planning. In
Proceedings of AAAI-99, pp. 585-590, 1999.

[21] Wren A.: Scheduling, Timetabling and Rostering - A Special Relationship. In
Proceedings of The Practice and Theory of Automated Timetabling, LNCS 1153,
Springer Verlag, pp. 46-76, 1996.

