
Noname manuscript No.
(will be inserted by the editor)

System Demonstration of Interactive Course Timetabling

Tomáš Müller · Keith Murray · Hana Rudová?

Received: date / Accepted: date

1 Introduction

This system demonstration presents an approach to interactive timetabling used by the
UniTime university timetabling system. This application, which is publicly available under
an open source license, has been successfully applied at Purdue University [8], a large pub-
lic university (39,000 students) with a broad spectrum of programs at the undergraduate and
graduate levels. The complete system includes course timetabling, examination timetabling,
event management, and student sectioning.

UniTime has a completely web-based interface using the Enterprise Edition of Java
(J2EE). Hibernate is used to persist data in an SQL-enabled relational database (e.g., MySQL
or Oracle) and an XML interface can be used to tie the application with other systems
used by a university. The course timetabling, examination timetabling and student section-
ing problems are modeled as constraint satisfaction and optimization problems (CSOP) and
solved using the solver library [3]. This constraint-based local search framework has also
been successfully applied to the International Timetabling Competition 2007, where it was
among the finalists in all three tracks and the winner of two [4].

A major goal of the system design has been to facilitate requests for changes in the
timetable that inevitably occur. Interactive timetabling was previously explored in [7], con-
centrating on interactive removal of clashes. [1] investigated explanations in constraint pro-
gramming to handle dynamic changes in the timetable. Generation of a timetable was in-
teractively controlled by the user in [2]. Earlier work by the present authors also examined
construction of a timetable using minimal changes to an initial solution [5]. The work pre-

? Hana Rudová is supported by the Ministry of Education, Youth and Sports of the Czech Republic under
the research intent No. 0021622419.

T. Müller · K. Murray
Space Management and Academic Scheduling, Purdue University
400 Centennial Mall Drive, West Lafayette, IN 47907-2016, USA
E-mail: muller@unitime.org, kmurray@unitime.org

H. Rudová
Faculty of Informatics, Masaryk University
Botanická 68a, Brno 602 00, Czech Republic
E-mail: hanka@fi.muni.cz



2

sented here encompasses an interactive mode for exploring possible changes, and easily
making them, which was also found to be necessary. While this system demonstration fo-
cuses on making interactive changes to the course timetable, a similar approach is also used
within the application for examination timetabling and event scheduling. Furthermore, an
interactive phase of student sectioning (referred to as online student sectioning [6]) is cur-
rently being developed.

2 Interactive Timetabling

At Purdue, the complete university timetabling problem has been decomposed into a se-
ries of subproblems solved at the academic department level. Although each subproblem is
solved separately, each solution considers all of the other problems for which a timetable
has already been created. This coordination across problems is especially important when
making interactive modifications to an existing timetable that may impact several others.

The course timetabling user interface consist of two parts: a data entry portion and a
course timetabling solver. Basic data related to rooms, instructors, and courses (including
all constituent classes) are entered via a series of web forms along with any associated
preferences or requirements. Once all data have been entered into the system, the timetabling
solver is used to create an automated timetable for the given (sub)problem. Subsequently,
most changes are made using interactive timetabling. An exception is when multiple changes
are desired in the input data. In this case, a new timetable is built from scratch or by using
the minimal perturbation solver [5] which creates a solution to the modified timetabling
problem while trying to minimize changes between the original and the new solution.

The same constraint model is used for both automated and interactive timetabling, with
the same objective function consisting of satisfaction of

– preferences on time and rooms,
– distribution preferences that can be put between two or more classes (e.g., same room,

back-to-back, or precedence),
– student conflicts (i.e., students that are expected to take two classes that either overlap

in time or are back-to-back in rooms that are too far apart),
– divergence from the original solution, expressed as the number of students affected by a

time change (room changes are usually consider less harmful),

along with several less important criteria. During interactive timetabling, the solver does not
make any decisions, It does, however, provide users with a set of feasible solutions (and their
associated costs) that can be reached via a backtracking process of limited depth. The user
then determines the best tradeoff between accommodating a desired change and the costs
imposed on the rest of the solution with a knowledge of what those costs will be. Moreover,
to avoid a need for changing the input data, some of the hard constraints can be relaxed
in the interactive mode. This means, for instance, that the user can put a class into a room
different from the ones that were initially required. This is accomplished by making these
hard constraints soft, but with too large of penalty imposed for the solver to suggest a change
violating the constraint.

The timetabling user interface contains a set of pages that display various aspects of the
current timetable. The user can view the classes in a time-resource grid for each resource
(room, instructor, etc.), a list of assigned classes, or a list of yet-to-be-assigned classes.
Changes to preferences or requirements made between the original and the current timetable,
a history of the changes made using the interactive solver (which can also be used to easily



3

undo such a change if needed), and various reports displaying room utilization, student
conflicts, and violation of other soft constraints are also available.

Fig. 1 Display of a timetable for given rooms.

A consistent color coding is used throughout the application. Required times or rooms
are marked in blue, prohibited in red, light green and dark green for preferred and strongly
preferred, yellow and orange, respectively, for discouraged and strongly discouraged. Fig-
ure 1 illustrates the timetable display provided for several rooms. The user can modify the
assignment of one or more classes by clicking on a class in any of these views.

Each user interaction with the timetable can be seen as a sequence of changes to indi-
vidual classes (beginning with the user selecting a class that needs to be changed). Figure 2
illustrates the information available to the user during each step of considering changes to
the selected class of interest. The user may explore different options, consider various types
of changes to the class, commit selected choices, or discard all changes considered. Selected
Assignments describe changes already made to the timetable during the current interaction.
Conflicting Assignments inform the user of any conflicts created in the timetable as a result
of the selected assignments. Suggestions are optional changes the user may choose from
that result in a feasible timetable. In each step (of an interaction), the user has the following
possibilities:

– Commit the change. At this point, the actual timetable is modified, all the selected as-
signments are assigned and the conflicting classes, if any remain, are unassigned. The
interaction is terminated.

– Abandon the change. The interaction is terminated without making any changes to the
actual timetable.

– Select a suggestion. One of the suggestions is selected by the user, it is displayed to-
gether with the selected assignments. The user can still select another suggestion or try
assign the class manually in the next step, e.g., if he or she is not satisfied with the
resultant quality of the solution.



4

Fig. 2 Interactive solver interface for MA 52700 after selection of a new time assignment.

– Select a placement. Instead of choosing a suggestion, user picks a time and/or a room
manually (for the selected class). This assignment is added into the list of selected as-
signments and the list of conflicts is recomputed together with the suggestions. The user
may choose a different placement in the next step, e.g., if there are too many classes
conflicting with the new assignment.

– Remove a selected assignment. An assignment is removed from the list of selected as-
signments, conflicts and suggestions are recomputed.

– Select another class. A different class (e.g., one of the conflicting classes) is selected.
Suggestions are recomputed to include the selected class.

Besides the above actions, the user has a wide variety of additional choices that may
help to find a desired change. For instance, the list of available suggestions can be filtered by
additional criteria or the number of allowed additional changes of the provided suggestions
can be increased.

Suggestions are computed using a branch and bound algorithm of a limited depth (ini-
tially allowing 2 additional changes). This process starts from the list of selected assign-
ments, trying all possible placements for the selected class and resolving hard conflicts cre-



5

ated by these changes. Only solutions that do not violate any hard constraints are allowed,
which along with the quality of the n-th best solution found (n being the number of sug-
gestions to be displayed) bounds the search. A more formal description of the algorithm is
available in [8]. It is also shown here, based on comparison runs with no time limit on the
branch and bound solutions, that a 5 second time limit is sufficient to present an optimal
suggestion incorporating up to two additional changes in more than half of the cases (for
the timetabling problem at Purdue). This time limit is important to keep the user interface
interactive; however, when the limit is reached, the user has the option (e.g., when no desired
suggestion is found) to recompute these suggestions with an increased time limit.

3 Conclusion

An extension of the UniTime course timetabling application has been presented that al-
lows users to modify automatically computed timetables when a small number of changes
are necessary to accommodate new parameters added after a timetable has been published.
This interactive component allows the user to to find high quality options for meeting the
additional problem parameters and deciding whether to modify the previous solution. The
presented application is publicly available under an Open Source license1, and can be down-
loaded from the UniTime web site http://www.unitime.org. This site also contains infor-
mation about ongoing research, online documentation for the described system, and various
real-life benchmark data sets for course timetabling, examination timetabling and student
sectioning problems.

References

1. Hadrien Cambazard, Fabien Demazeau, Narendra Jussien, and Philippe David. Interactively solving
school timetabling problems using extensions of constraint programming. In Edmund Burke and Michael
Trick, editors, Practice and Theory of Automated Timetabling V, pages 190–207. Springer-Verlag LNCS
3616, 2005.

2. Hans-Joachim Goltz and Dirk Matzke. Combined interactive and automatic timetabling. In Proceed-
ings of the Practical Application of Constraint Technology and Logic Programming, pages 529–535. The
Practical Application Company Ltd, 1999.

3. Tomáš Müller. Constraint-based Timetabling. PhD thesis, Charles University in Prague, Faculty of Math-
ematics and Physics, 2005.

4. Tomáš Müller. ITC2007 solver description: a hybrid approach. Annals of Operations Research, 127:429–
446, 2009.

5. Tomáš Müller, Roman Barták, and Hana Rudová. Minimal perturbation problem in course timetabling.
In Edmund Burke and Michael Trick, editors, Practice and Theory of Automated Timetabling, Selected
Revised Papers, pages 126–146. Springer-Verlag LNCS 3616, 2005.

6. Tomáš Müller and Keith Murray. Comprehensive approach to student sectioning. In PATAT 2008 –
Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling,
Montreal, Canada, 2008.

7. Sylvain Piechowiak, Jingxua Ma, and René Mandiau. An open interactive timetabling tool. In Ed-
mund Burke and Michael Trick, editors, Practice and Theory of Automated Timetabling V, pages 34–50.
Springer-Verlag LNCS 3616, 2005.

8. Hana Rudová, Tomáš Müller, and Keith Murray. Complex university course timetabling. Journal of
Scheduling, 2010. To appear.

1 Constraint-based solver, including course timetabling, examination timetabling and student sectioning
extensions is available under GNU Lesser General Public License (LGPL), the complete timetabling appli-
cation is available under GNU General Public License (GPL).


