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Botanická 68a, Brno 602 00, Czech Republic

hanka@fi.muni.cz
2 Space Management and Academic Scheduling, Purdue University

1128 ENAD, West Lafayette, IN 47907, USA
kmurray@purdue.edu

Abstract. An extension of constraint logic programming that allows
for weighted partial satisfaction of soft constraints is described and ap-
plied to the development of an automated timetabling system for Purdue
University. The soft constraint solver implemented in the proposed solu-
tion approach allows constraint propagation for hard constraints together
with preference propagation for soft constraints. Repair search methods
are proposed to improve upon initially generated (partial) assignments
of the problem variables. The model and search methods applied to the
solution of the large lecture room component are presented and discussed
along with the computational results.

1 Introduction

This paper describes the design approach and solution techniques being devel-
oped for an automated timetabling system at Purdue University. The initial
problem considered here is the design of an intelligent system to assist with con-
struction of the large lecture component of the university’s master class sched-
ule. The design anticipates expanding the scope of the problem to accommo-
date a demand-driven approach to timetabling all classes at the University. In
demand-driven timetabling, student course selections are utilized to construct a
timetable that attempts to maximize the number of satisfied course requests. In
the initial problem we consider the course demands of almost 29,000 students
enrolled in approximately 750 classes, each taught several times a week.

A solution to the timetabling problem is being developed using constraint
logic programming [21, 13]. CLP is a respected technology for solving hard prob-
lems which include many complicated (non-linear) constraints [11]. Its main
advantages over other frameworks are the declarative nature of problem descrip-
tions via logical constraints, and a constraint propagation technique for reducing
the search space.

Timetabling problems [7, 20] are often over-constrained, which is the case
with our problem since it is not possible to satisfy all requests of students for en-
rollment to specific courses. Preferential requirements for time and room assign-
ment may also lead to the problem being over-constrained. Soft constraints [8, 4]



can be applied to define all requirements declaratively rather than encapsulating
many of them into the control part of the problem solution. In our problem solu-
tion, we have applied a weighted CSP [8] approach which considers weights/costs
for each constraint and minimizes the weighted sum of unsatisfied constraints.

Soft constraints are often applied to solve timetabling problems with the help
of constraint satisfaction. They are mostly applied via the standard constraint
satisfaction method, which offers no special support for more effective resolution
of the soft constraints. Golz et al. [10] applies the typical solution — the given
unary soft constraints, with priorities, are integrated into the solution search
through value and variable ordering heuristics. An optimization constraint was
applied for solving medium-sized problems [12]. Abdennadher et al. [1] describe
the solution of a department-sized problem, including soft constraint solver, for
a cost-based approach implemented with Constraint Handling Rules [9].

Our work includes development of a new solver for soft constraints. The solver
was implemented as an extension of the CLP(FD) library [5] of SICStus Prolog.
This approach is of particular importance for the construction of demand-driven
schedules where complete satisfaction of all constraints is not feasible. Soft con-
straints have also been applied to accommodate the preferences of instructors
with respect to time and room assignments for their classes. We will also describe
a new repair search technique which allows us to find a solution even when the
problem is over-constrained.

The following sections of this paper will give a more complete description of
our timetabling problem. Section 3 explains the soft constraint solver that was
implemented, together with the search procedures used on this problem. This is
followed by a description of how the problem has been modeled, including the
representation of soft and hard constraints. In addition, the methods applied
to the search for a feasible solution are discussed. Computational results are
discussed in Sec. 5. Comparison with other approaches to solving demand-driven
timetabling problems is presented in Sec. 6. The final section reviews the results
of our work and looks to future extensions of the problem solution and soft
constraint solver improvements.

2 Problem Description

At Purdue University, the timetabling process currently consists of constructing
a master class schedule prior to student registration. The timetable for large
lecture classes is constructed by a central scheduling office in order to balance
the requirements of many departments offering large classes that serve students
from across the university. Smaller classes, usually focused on students in a single
discipline, are timetabled by “schedule deputies” in the individual departments.
This process has been tailored to the political realities of a decentralized univer-
sity, where faculty can be quite put off by the idea of having a central office tell
them when to teach, or even by providing such an office with much information
about when they are available to teach.



A natural decomposition of the university timetabling problem has therefore
resulted, consisting of a central large lecture timetabling problem and 74 disci-
plinary problems. The large lecture problem consists of approximately 750 classes
having a high density of interaction that must fit into 41 lecture rooms with ca-
pacities up to 474 students. In this problem, the course demands of almost 29,000
students out of a total enrollment of 38,000 must be considered. The departmen-
tal problems range from only a few classes up to almost 700, with an average size
of slightly more than 100 organized classes. The largest departmental problems
are simplified by having many sections of the same course that are offered at
multiple times.

The timetable maps classes (students, instructors) to meeting locations and
times. A major objective in developing an automated system is to minimize the
number of potential student course conflicts which occur during this process.
This requirement substantially influences the automated timetable generation
process since there are many specific course requirements in most programs of
study offered by the University.

To minimize the potential for time conflicts, Purdue has historically sub-
scribed to a set of standard meeting patterns. With few exceptions, 1 hour x
3 day per week classes meet on Monday, Wednesday, and Friday at the half
hour. 1.5 hour x 2 day per week classes meet on Tuesday and Thursday during
set time blocks. 2 or 3 hours x 1 day per week classes must also fit within spe-
cific blocks, etc. Generally, all meetings of a class should be taught in the same
location. Conforming to this set of standard meeting patterns will be seen to
have a strong influence on both the problem definition and the solution process,
since the meeting patterns defined for each class introduce hard restrictions on
the acceptability of any generated solution.

The other major constraints on the problem solution are instructor avail-
ability and a limited number of rooms available with sufficient capacity, spe-
cific equipment, and suitable location. Some of these constraints must be satis-
fied; others can be introduced within an optimization process in order to avoid
an over-constrained problem.

This paper describes the construction of the timetable for the large lecture
problem. The nature of this problem is the same as the timetabling problem at
the university level. There is a demand for specific class combinations to meet
individual student’s needs. Meeting patterns direct possible time and location
placement. Classroom allocation must respect instructional requirements and
the preferences of faculty. All instructors may have specific time requirements
and preferences for each class.

Another aspect of the timetabling problem that must be considered here is
the need to perform an initial student sectioning. Most of the classes in the large
lecture problem (about 75 %) correspond to single-section courses. Here we have
exact information about all students who wish to attend a specific class. The re-
maining courses are divided into multiple sections. In this case, it is necessary to
divide the students enrolled to each course into sections that will constitute the
classes. Without this initial sectioning it is not easy to measure the desirability



or undesirability of having classes overlap in the timetable. Our current approach
sections students in lexicographic order before joint enrollments between classes
are computed. This gives us the worst case possibility. The university currently
processes a precise student schedule after the master class schedule is created,
however, which should introduce some improvements. Possible directions for im-
proving this solution will be discussed in the final section.

3 Solver for Soft Constraints

Constraint propagation algorithms for the soft constraints are implemented as
a part of the preference constraint solver [17]. This constraint solver is built on
top of the CLP(FD) solver of SICStus Prolog [5] and implemented with the help
of attributed variables. An advantage of this implementation is the ability to
include both hard constraints from the CLP(FD) library and soft constraints
from a new preference solver.

3.1 Preference Variables and Preference Propagation

The preference solver handles preferences for each value in the domain of the
variable which will be called the preference variable. Each preference corresponds
to a natural number indicating the degree to which any soft constraint dependent
on the domain value is violated. An increase of the preference during the com-
putation with soft constraints is called a preference propagation. Let us note the
difference with constraint propagation, which removes values from the domain
of the domain variable during the computation of hard constraints. Removal of
domain values may also occur with preference variables. This corresponds to vi-
olation of a hard constraint. We may also set the degree of acceptable violation
for any preference variable. If the preference associated with a value in the do-
main of the preference variable should exceed this limit, it is removed from the
domain. This possibility is of particular interest for time (or classroom) variables
since all classes should be relatively equal in importance.

Zero preference means complete satisfaction of the constraint for the corre-
sponding value in the domain of the variable. Any higher preference expresses
a degree of violation that would result from the assignment of this value to vari-
able. All values which are not present in the domain of the preference variable
have the infinite preference sup. Preferences for each value in the domain of
the variable may be initialized with a natural number. This allows us to handle
initial preferences of values in the domain of the variable.

For each preference variable, the preference solver maintains an additional
domain variable (cost variable) having the current best preference of the prefer-
ence variable as its lower bound. The initial upper bound is set to infinity. Any
preference propagation results in an increase of the current best preference, with
the lower bound of the cost variable being increased accordingly. The sum of all
cost variables gives us the total cost of the solution (cost function).



Example 1. The unary soft constraint pref(PA, [7-5, 8-0, 10-0], CostPA)
creates the preference variable PA with initial domain containing values 7, 8, and
10 and preferences 5, 0, and 0, resp. It means that the value 7 is discouraged wrt.
other values. Preferences for remaining values are assumed as infinite, indicating
complete unsatisfaction. The domain variable CostPA is created with the domain
0..sup.

3.2 Soft Disjunctive Constraints

Let us describe two basic binary soft constraints we have implemented.

soft_different( PA, PB, Cost )
soft_disjunctive( PStart1, Duration1, PStart2, Duration2, Cost )

The soft different constraint expresses that the two preference variables PA,
PB should have different values. The constant Cost gives us the cost for vio-
lation of this constraint. The soft disjunctive constraint asks for the non-
overlapping of the two tasks specified by the preference variables PStart1,
PStart2 and the constant durations Duration1, Duration2. Again the Cost
is the weight of this constraint.

Algorithms for both constraints are based on the partial forward checking
algorithm and inconsistency counts [8]. Let us take a look at the soft different
constraint. Once the first preference variable is instantiated to some value X, the
inconsistency count for the second variable and the value X should be increased
by Cost, i.e., the preference propagation is processed for this variable and value.
The soft disjunctive would process preference propagation for all values in
the interval X..(X+Duration-1).

Inconsistency counts are maintained for all of the unassigned variables and
the values remaining in their domains. These can be applied during labeling
and optimization, e.g., values with the smallest inconsistency count can be se-
lected first (an optimistic approach). The change in inconsistency counts for each
preference variable is also reflected by the corresponding cost variable, e.g., the
smallest inconsistency count for the preference variable corresponds to the lower
bound of its cost variable.

3.3 Search

The aim of our problem solution is to be able to search for the complete as-
signment of the preference variables giving the best possible satisfaction of all
soft constraints. Since the evaluation of the assignment is given by the sum
of the corresponding cost variables, we may apply a standard branch & bound
algorithm.

Unfortunately it may not be easy to find any complete assignment. Mistakes
in the assignment of some variable(s) may lead to a time consuming exploration
of the search space with no complete solution. A complete assignment may not
even exist due to conflicts among the hard constraints. Our approach is to find



some initial partial assignment of the variables and subsequently repair it such
that all, or at least most, of the variables have been assigned a value.

Let us describe the initial search first. For each preference variable, we main-
tain a count of how many times a value has been assigned to the variable. A limit
is set on the number of attempts that are made to assign a value. Currently this
limit corresponds to the size of the domain of each variable. If the limit is ex-
ceeded, the preference variable is left unassigned and we continue in the search.
Whereas any assignment of a value to this variable will lead to a time consuming
trashing1, allowing several values to remain in its domain will not initiate a con-
straint propagation that would detect inconsistency with the already assigned
variables. As a result of this search, we obtain a partial assignment of variables
and the sets of values which were tried unsuccessfully for the remaining variables.

Any repair search can use the result of the former (initial or repair) search.
First, we apply heuristics with the successfully assigned variables to give us
a value for each variable to be tried first. Second, we apply heuristics with the
remaining variables to give us values to be tried last.

This change in the value ordering can be included in the problem with the
help of preferences. We can encourage certain values by increasing the initial
preferences or discourage them by decreasing their initial preferences. This type
of redefinition allows us to run a repair search using the same procedure as the
initial search.

After construction of a partial assignment, the user can decide on a desirable
continuation of the search. The following possibilities are of particular interest:

1. processing the repair search directed by the proposed value ordering heuris-
tics;

2. changing variable ordering such that unassigned variables are tried first,
then processing the repair search directed by the proposed value ordering
heuristics;

3. defining other values to be tried first or last based on user input, and process
the repair search directed by the updated value ordering heuristics;

4. relaxing some hard constraints based on user input, and processing the initial
search or the repair search directed by the updated value ordering heuristics.

The first two possibilities are aimed at automated generation of a better assign-
ment. The second approach seeks to find an assignment of variables which may
be more difficult to locate in the search space using the original variable ordering.
This step may lead to significant changes in the generated solution. The third
possibility allows the user to direct the search into parts of the search space
where a complete assignment of variables might more easily be found. The last
step can be useful if the user discovers a conflict among some hard constraints.
The repair searches can reuse most of the results from the former search and
permute only some parts of the last partial assignment. Let us note that there
is often an advantage to a user directed search in timetabling problems, since

1 A large number of the variable assignments having to be undone repeatedly.



the user may be able to detect inconsistencies or propose a suitable assignment
based on the partially generated timetable.

The user can also change the problem definition (add/delete/change classes
or add/delete constraints) and apply the repair search while reusing results of
the former solution for classes with no changes.

4 Problem Solving

We would like to describe a model for the timetabling problem which consists
of variables for the time and room assignments of each class and of both hard
and soft constraints, applying an approach described in the previous section. We
also explore the control portion of the solution, which consists of the application
of the proposed initial and repair searches.

4.1 Time and Classroom Variables

The domain of the time variables is represented by the natural numbers 0..104,
corresponding to 5 days of 21 half-hours. The domain of the classroom variables
is represented by the natural numbers 1..Number Of Classrooms.

Each class consists of between one and five meetings per week (typically
two or three). All meetings have the same duration and are typically taught at
the same time of day. Valid combinations of the number of meetings and the
duration are called meeting patterns. Each meeting pattern (e.g., 1 hour x 3
meetings) has a defined set of days on which the meetings may be scheduled
(e.g., Monday, Wednesday, Friday for 1 hour x 3 meetings). Interestingly, the
start time of the first meeting of a class differs from the start times of the
following meetings by a constant factor for most combinations (see Table 1).
Excepting the MF (Monday and Friday) combination for 2 meetings per week

Table 1. Maximal sets of the possible combinations of days for class with given number
of meetings per week (e.g., TTh means that course can have its meetings on Tuesday
and Thursday).

Number of meetings Possible combination of days

1 M or T or W or Th or F

2 MW or TTh or WF or MF

3 MWF

4 TWThF or MWThF or MTThF or MTWF or MTWTh

5 MTWThF

and the 4 meeting patterns (includes less than 1% of classes), one time variable
is sufficient to contain the complete information about the start time of classes.
This is a preference variable indicating the start time of the first meeting (T1).



It will be referred to as the time preference variable. The starting times of all
remaining meetings (T2,..., Tn) are domain variables only, and may be related
to the time preference variable by the simple constraint

Ti#= T1 + Constant ∗ (i− 1) . (1)

Preferences associated with each value in the domain of the time preference
variable allow us to express the degree to which any time assignment for a class
is preferred or discouraged. The remaining domain variables may be referenced
in the hard constraints (e.g., serialized), but they do not require the more
expensive processing by the preference solver.

Since all class meetings should be taught in the same room, we suffice with
only one common classroom variable for all meetings (called the classroom pref-
erence variable). As a preference variable, it associates a preference with each
classroom expressing how desirable or undesirable it is for a given class.

4.2 Hard Constraints

Let us summarize the requirements which are implemented in the system using
hard constraints:

1. meeting pattern specification;
2. prohibited or required times for classes;
3. class requires room with sufficient seating capacity;
4. class requires or prohibits some building(s) or room(s);
5. class requires or prohibits classroom of a specified generic type (computer,

computer projection, audio recording, document camera, . . . );
6. classes taught by the same instructor do not overlap;
7. sections of the same course do not overlap;
8. additional constraints over selected sets of classes: classes must be taught at

the same times, on the same days, in the same classrooms, . . .

Meeting pattern constraints relate the domain variables for all class meetings
as was described in Eqn. 1. In addition, the domain of the time preference
variable is reduced such that all invalid values are removed.

Example 2. A 1.5 hour x 2 meetings class is represented by the two variables
T1, T2. The first of these is the time preference variable with the initial domain
(0..104) reduced to the values 21,24,...,39 because the TTh combination
is valid only. The second domain variable is related with T1 by the constraint
T2 #= T1 + (21*2)*1. The constant separating start times here is 21 periods
x 2 days.

A 2 hours x 2 meetings class has MW, TTh, and WF as valid meeting
day combinations. It is represented by the two variables T1, T2 related by the
same constraint as before. The reduced domain of T1 corresponds to the values
0,4,8,12,16, 21,25,29,33,37, 42,46,50,54,58.



Requirements 2–5 are implemented by domain reduction in the corresponding
domains of the time and classroom preference variables. Requirements 6 and 7
are included with help of the constraint serialized which constrains tasks,
each with a start time and duration, so that no tasks ever overlap. Built-in
constraints of CLP(FD) library of SICStus Prolog are used to implement various
requirements over selected sets of classes as mentioned in the item 8.

Additional hard constraints must be posted to assure that each class is as-
signed to just one suitable classroom. This requirement could be implemented
via the disjoint2 constraint, which ensures non-overlapping of a set of rect-
angles. In our case, the rectangle is defined by the start time variable (Time)
and the duration (Duration) of each meeting, and by the classroom variable
(Classroom) for the corresponding class:

disjoint2( [ rectangle(Time, Duration, Classroom, 1) | _ ] ) .

The number 1 represents the requirement of one classroom for each meeting.
A different type of propagation among the time variables is achieved via

the cumulative constraint. It ensures that a resource can run several tasks in
parallel, provided that the discrete resource capacity is not exceeded. If there
are N tasks, each starting at a certain time (StartI), having a certain dura-
tion (DurationI) and consuming a certain amount of resource (ResourceI),
then the sum of resource usage of all the tasks must not exceed resource limit
(ResourceLimit) at any time:

cumulative([Start1,...,StartN], [Duration1,...,DurationN],
[Resource1,...,ResourceN], ResourceLimit) .

The cumulative constraint helps to assign a classroom of sufficient size to
each meeting while allowing smaller classes to be assigned to larger classrooms.

Example 3. Let us imagine a small example with 2 rooms for 40 students,
3 rooms for 20 students, and 1 room for 10 students. The set of cumulative
constraints follows

cumulative(Time_meetings_with_size_40, Dur_40, ListOf1, 2),
cumulative(Time_meetings_with_size_20_40, Dur_20_40, ListOf1, 5),
cumulative(Time_all_meetings, Dur_all, ListOf1, 6).

The first constraint ensures that the largest classes are accommodated into the
largest rooms, the second constraint allows medium-sized classes to be placed
into rooms for 20 students, and also into rooms for 40 students if they are not
already asked for by the first constraint. The third constraint allows movement
of small classes between all rooms, subject to the condition that they are not
occupied by any larger classes at the same time.

More precisely, we can post one cumulative(Starts, Durations, ListOf1,
Limit) constraint for each possible size of classroom denoted by Size. The con-
stant ListOf1 denotes a list of 1 representing a unit resource requirement (one
classroom) by each course. Durations represents the durations of classes with



the start time Starts. Variables Starts and Limit should satisfy the following
properties

Starts= {Start|meeting(Start,Duration,Capacity)∧ Capacity≥ Size}
Limit= card{Id|classroom(Id,Capacity)∧ Capacity≥ Size}

Actually, it is sufficient to post this constraint only for some specific sizes of
classrooms. Classrooms of similar size are grouped together to achieve better
efficiency.

Another possibility for taking cumulative constraints into account consists
of splitting classrooms into groups by size. Each class would be included in the
group of corresponding size only. Such division can be useful if we do not want to
put smaller classes into larger classrooms of other group at any time (e.g., smaller
classes must be in the classrooms with a capacity smaller than 400 students).

4.3 Soft Constraints

Three types of soft constraints are currently handled by the system which will
be discussed in this section:

1. unary constraints on time variables — faculty time preferences;
2. unary constraints on classroom variables — faculty preferences on the class-

room selection for classes;
3. binary constraints for each joint enrollment between two classes.

Instructors may specify preferences for the days, hours, or parts of days they
wish to encourage or discourage. This specification is transformed into a list of
integer preferences corresponding to the possible start time of each class. We
have seen that the initial selection of start times for each class is determined by
its meeting pattern. The domain size of this set of start times can differ greatly
among meeting patterns (it ranges from 5 to 50 possible values). This causes the
relative effect of any given preference to vary greatly among the meeting patterns.
To compensate for this effect, the number of preference points associated with
instructor time preferences differ based on the meeting pattern.

Each class is associated with a time preference variable with preferences ini-
tialized either as specified by the instructor or to a set of default preferences.
These default preferences are very important — their exclusion would lead to the
construction of timetables which discriminate against classes for which no pref-
erences have been provided. Many such classes would be placed in undesirable
times, which no human timetabler would want to do.

Instructors may also specify positive or negative preferences towards the
room selection for each class. It is possible to prefer or discourage particular
classrooms, buildings, or properties of the room (e.g., “I prefer classrooms with
a computer.” or “I discourage classrooms without windows.”). Each value in the
domain of the classroom preference variable has either the specified preference
or the neutral preference specification.

Any two classes potentially have a number of students who are enrolled to
both at the same time. We seek to control their degree of overlap in the timetable



by a generalization of the soft disjunctive constraint (see soft disjunctive in
Sec. 3.2). Such binary soft constraints include two time preference variables for
corresponding classes, with the cost given by the number of students enrolled in
both. Since each class may have several meetings, such a generalized disjunction
needs to propagate preferences to the all values of the uninstantiated preference
time variable which could be affected by the overlap of any of the meetings.

Preferences associated with the time preference variables are influenced by
both the first and third soft constraints. Constraints of the first type initial-
ize preferences. Constraints of the third type propagate (increase) them during
the computation of the same cost function. The sum of the cost variables (see
Sec. 3.1) for the time preference variables gives this cost function, i.e., the solu-
tion cost wrt. time assignment. As a consequence we need to balance the number
of student joint enrollments from the third constraint with the number of pref-
erence points assigned by the first constraint, (e.g., the summarized preference
points of the instructor for one class corresponds to overlapping for 20 students).
The relationship between preference points and joint enrollments is specified as
part of the input data.

4.4 Labeling

Separated Time & Classroom Variable Labeling. In our timetabling problem, we
have time and classroom preference variables and two types of cost functions
based on the sums of the corresponding cost variables. These cost functions are
independent of each other and introduce two different criteria in our problem.
Since minimizing student conflicts and accommodating the time preferences of
classes were judged to be a more critical aspect of the problem than meeting
preferences for classrooms, we have explored the following approach: labeling
of time preference variables is processed first, followed by the labeling of room
preference variables. Potential improvements of this search are mentioned in
Sec. 7.

Initial & Repair Searches. The overall process of searching for a solution consists
of two main parts — the initial search and the repair search. Results of a prior
search are used only by the time preference variables. Information about an unas-
signed classroom variable reflects back upon the corresponding time preference
variable as we describe in the next paragraph.

In the initial search, preferences associated with the time preference vari-
ables are set as they are defined by the problem. Values of the unassigned time
preference variables that were unsuccessfully tried during the prior search are
discouraged during the next search. There are other time preference variables
for which a particular value is discouraged. These are the variables with a corre-
sponding unassigned classroom preference variable in the former search. Since we
have processed the assignment of the time variables first, such a non-assignment
is the result of no classroom being available for the corresponding time. Success-
fully assigned values for all remaining time preference variables are encouraged



in an automated repair search as it was proposed in item 1 in Sec. 1. In addi-
tion, variable ordering can be changed for unassigned time variables (item 2).
The user can also introduce his own preferences (item 3) or relax the hard con-
straints (item 4).

Value & Variable Ordering. Different heuristics were used for time and classroom
variable labeling. We have employed the first-fail heuristics to determine the
ordering of classes for time assignment. It selects the most highly constrained
time preference variables with respect to both hard and soft constraints. First,
we select among the variables having the smallest domain. Ties are broken based
on the greatest number of soft constraints related to this variable. If not selected
early, the domain of such a variable may become too small to select a sufficiently
preferred value, or it may even become empty and cause a backtracking. Early
propagation of soft constraints is also encouraged, so as not to discover mistakes
too late. A specific class time assignment was selected among the most preferred
values, i.e., we have chosen an optimistic approach for the value selection. This
approach lead us to a good first solution from the point of view of cost function
over time variables.

The first-fail approach was also used to choose a class to be placed into
a classroom. The best results of the cost function over classroom variables were
achieved by the following value ordering heuristics. First, the most preferred
classroom was selected. Ties were broken by the selection of the smallest available
classroom so as not to waste available resources. A branch and bound search was
applied to improve the cost function over room variables.

During the repair searches, we have updated our variable ordering heuristics
as it is pointed in Section 3.3 about the proposed search procedure, i.e., each
variable unassigned in the last search was assigned prior to successfully assigned
variables in the consequent search (see item 2).

5 Computational Results

Our data set from fall semester 2001 includes 747 classes to be placed into 41
classrooms. The classes included represent 81,328 course requirements for 28,994
students. The results presented here were computed by SICStus Prolog 3.9.0 on
a PC with AMD Athlon/850 MHz processor and with 256 MB of memory.

Table 2 shows the computational results for the initial search and the sub-
sequent automated repair searches. Unassigned classes refers to the number of
classes with either time or classroom variables that were not assigned during
labeling. Satisfied time gives the percentage of how many encouraged times for
classes were selected. Unsatisfied time refers to the percentage of the discouraged
times for classes which were selected. Student conflicts estimates the percentage
of unsatisfied requirements for courses by students. Preferred classrooms mea-
sures the percentage of classes for which encouraged classrooms were selected.
The current data set does not include any preferential requirements which dis-
couraged specific classrooms.



Table 2. Results of the initial search and the automated repair searches

Run initial repair I. repair II. repair III. repair IV.

Unassigned classes 19 15 10 5 3

Satisfied time (%) 83.6 81.1 79.4 79.9 79.7

Unsatisfied time (%) 4.1 4.3 4.0 4.0 4.0

Student conflicts (%) 1.6 1.7 1.9 1.9 1.9

Preferred classrooms (%) 77.6 49.7 49.0 48.3 49.0

The initial search procedure took about 2-3 minutes for the time labeling, one
step of the branch and bound search for classroom variables took 1-2 seconds.
The time labeling takes a longer time due to the preference propagation and more
complex constraints (e.g., cumulative) posted on time variables. The length of
the overall run depends on the number of repair steps, computation of the best
solution took about 15 minutes (one initial step followed by four repair searches).

Originally we started to solve the problem using a built-in backtracking
search algorithm with a variety of variable and value ordering heuristics. This
attempt did not lead to any solution after 10 hours of computations however.
Too many failed computations were repeated exploring parts of search tree with
no solution.

We can see that most of preferential requirements of instructors were satisfied
during assignment of time variables. The unsatisfied time percentage mostly
illustrates that a number of classes must be taught at unpopular times due
to the limited number of rooms available. Let us also note that these results
include default preferences for classes with no preferred times. The automated
repair search (see item 1 in Sec. 1) during time assignment was able to improve
on the initial solution substantially. The solution continued to improve through
four repair searches. Additional steps did not improve the quality of the solution
further.

One of the more important lessons learned here is that the disjoint2 and
cumulative constraints must be used together in a redundant manner to find
an acceptable solution (for description of both constraints see Sec. 4.2). The
cumulative constraints were able to introduce additional constraint propagation
for the time variables by informing them of the available room resources. Neither
cumulative nor disjoint2 constraints alone were able to find an acceptable
solution. Results using only the cumulative constraints left about 20 unassigned
classes. Using only the disjoint2 constraint resulted in 50 unassigned classes.

6 Related Work

Purdue University. Currently the timetable for Purdue University is constructed
by a manual process. An earlier approach examined for automating construction



of the Purdue University timetable modeled the room-time assignment problem
as a multiple choice quadratic vertex packing and utilized a tabu search algo-
rithm [14]. This approach was further developed into a prototype system used to
create a schedule for large lecture classes in spring 1994, but was never adopted
by university schedulers due to inadequacies in the way it handled instructor
time preferences and student conflicts.

Constraint Programming. There have not been many attempts [18, 3] to apply
constraint programming to the solution of demand-driven timetabling problems
where it is not possible to satisfy all requests of students. Such over-constrained
problems require enhancements to the classical constraint satisfaction approach.
Once these are developed, we can apply all of the advantages of constraint
programming, including a declarative description of the problem together with
strong propagation techniques.

We have previously constructed a demand-driven schedule for the Faculty
of Informatics at Masaryk University [18] having 270 classes and about 1250
students. Conflicts of students between classes were controlled using a similar
cost function as in our current approach. Constraint logic programming allowed
implementation of a variety of constraints available in ILOG Scheduler [15]. Soft
constraints were implemented with the help of special variable and value ordering
heuristics defined by the preferences of particular variables in the constraints.
The timetable constructed was able to satisfy 94 % of the demands of students
and more than 90 % of the preferential requirements of teachers. Unfortunately,
it was not easy to extend this implementation to larger problems due to the
bound consistency algorithms in ILOG Scheduler. Since these algorithms only
propagate changes over the bounds of the domain variables, both constraint and
preference propagations were much weaker than there are now.

A solution of the section assignment sub-problem is included in Banks, van
Veek, and Meisels [3] via iterative addition of constraints into a CSP represen-
tation. Inconsistent constraints are not included in the final CSP representa-
tion, which allows solution of an over-constrained problem. This implementa-
tion, including its own constraint satisfaction solver, was verified using random
timetabling problems based on problems from high schools in Edmonton, Al-
berta, Canada. The largest data set included requirements of 2,000 students and
200 courses. They were able to satisfy 98 % of student demand on more than
half of the experiments. The solution presented is influenced by a special set of
times that must be assigned to each course. It conforms well to high schools, but
is rather different from the situation in university course timetabling. University
class meeting patterns are not as strict, which results in a problem with a variety
of additional requirements and preferences.

Other Approaches. The comprehensive university timetabling system described
by Carter [6] is characterized by problem decomposition with respect to both
type and size of final sub-problems. They were able to solve the problem for
20,000 students and 3,000 course sections. The system was used for 15 years at
the University of Waterloo.



Aubin&Ferland [2] propose an iterative heuristic method to solve the problem
which alternately assigns times and students to course sections until no further
improvements to the solution can be found. The system was tested on data
from a High School in Montreal including demands of 3,300 students and 1,000
courses.

Robert&Hertz [16] decompose the problem into a series of easier sub-problems
corresponding to time, section, and classroom assignments and solve them via
tabu search methods. The method presented is able to generate an initial solu-
tion which can be incrementally improved after problem redefinition (negotiation
on initial constraints with teachers and students). The initial solution for about
500 students and 340 course sections satisfied approximately 10 % of the student
requirements and 80 % of the preferential requirements of teachers.

The local search heuristic procedure of Sampson, Freeland, and Elliot [19]
solves a problem having a smaller solution space with 89 course sections and 230
students. They were able to meet 94 % of the student scheduling requirements at
the Graduate School of Business Administration at the University of Virginia.

7 Conclusion

We have proposed and implemented a solution to a large scale university time-
tabling problem. We have constructed a demand-driven schedule which is able to
reflect diverse requirements of students during course enrollment. Our solution is
able to satisfy the course requests of 98 % of students. About 80 % of preferential
requirements on time variables were also met with only a small number of classes
taught at discouraged times (about 4 %). The automated search was able to find
suitable times and classrooms for 744 classes. The remaining 3 classes should be
possible to assign with user input.

Our proposal included a new solver for soft constraints which is of particular
interest for timetabling problems where the costs in the problem are directly
related to the present values for time and room assignments of classes. We have
proposed a special repair search algorithm which allows us to find a solution to
the problem (even when it is over-constrained). We have also discussed a special
set of cumulative constraints which, together with the disjoint2 constraint,
processes stronger constraint propagation.

Our future research will include an extension of the problem solution together
with improvements to the preference solver that has been described. Also, our
approach must be validated using data sets from other semesters.

Currently we are working on the inclusion of new variable ordering heuristics
which will process an interleaved labeling for both time and classroom variables.
We intend to process an earlier assignment of classroom variables for which late
labeling proved to be difficult or impossible. Other heuristics will be aimed at
improving the solution with the help of a pattern matching mechanism based on
the sets of meeting patterns in the problem.

We would like to do an extensive study of the proposed repair search algo-
rithm and its possible application to a general problem solution. We also intend



to explore how it may be extended to the solution of the minimal perturba-
tion problem, which is very important for all timetablers. Once timetables are
published they require many changes based on additional input. These changes
should be incorporated into the problem solution with minimal impact on any
previously generated solution.

Purdue University currently relies on a completely manual process for con-
structing its timetable. A detailed comparison of results between the approach
described in this paper and the manual process for the full large lecture problem
is one of the next steps in our work.

A new approach for making initial student section assignments for courses
with multiple sections will also be examined in future work. This is required to
construct a joint enrollment matrix that is more representative of the probable
cost of having two classes overlap. An approach such as the homogeneous section-
ing used by Carter [6] is attractive since it tends to result in fewer classes having
joint enrollments with others. This simplifies the task of finding non-conflicting
assignments and appears to be an accurate representation when a final sectioning
process will take place after construction of the timetable.

We feel that the solution methods used for the large lecture problem should
be directly applicable to construction of the 74 academic unit timetables. Some
solution refinements may be necessary to simplify time assignments for intro-
ductory courses with large numbers of sections. Additional system architecture
work will also be necessary to allow unit timetablers to use local preference files,
and to work cooperatively if there is a high degree of interrelationship between
classes offered by the units.
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