
Penalising Patterns in Timetables:
Novel Integer Programming Formulations

Edmund K. Burke1, Jakub Mareček12†,
Andrew J. Parkes1, and Hana Rudová2

1 Automated Scheduling, Optimisation and Planning Group
The University of Nottingham School of Computer Science and IT
Jubilee Campus in Wollaton Road, Nottingham NG8 1BB, UK

2 Masaryk University Faculty of Informatics
Botanická 68a, Brno 602 00, The Czech Republic

1 Introduction

Many complex timetabling problems, such as employee rostering [1]
and university course timetabling [2, 3], have an underpinning bounded
graph colouring component, a pattern penalisation component and a
number of side constraints. The bounded graph colouring component
corresponds to hard constraints such as “each student attends all events
of courses of his choice”, “no student can be in two rooms at the same
time”, or “there can be at most a given number of events taking place
during each period”. Despite the intractability and hardness of approx-
imation of bounded graph colouring, it is often easy to generate feasible
solutions for instances with hundreds of events and hundreds of distinct
enrolments. See [4] for more details. However, real-world timetabling
systems [5] have to cope with much more challenging requirements,
such as “students should not have gaps in their individual daily timeta-
bles”, which often make the problem over-constrained. The key to tack-
ling this challenge is a suitable formulation of “soft” constraints, which
count and minimise penalties incurred by matches of various patterns.
Several integer programming formulations of such pattern penalising
constraints are presented and discussed in this paper.

† Corresponding author: Jakub Mareček, e-mail: jakub@marecek.cz.

2 Jakub Mareček et al.

2 Udine Course Timetabling

Throughout the paper, the Udine Course Timetabling Problem is used
as an illustrative example of timetabling with soft constraints. The
problem has been formulated by Schaerf and Di Gaspero [6, 7] at the
University of Udine. Its input can be outlined as follows:

• C, T , R, D, P are sets representing courses, teachers, rooms, days,
and periods, respectively

• U is a set representing distinct enrolments in courses (“curricula”),
with Inc being the mapping from curricula to non-disjunctive sub-
sets of C

• F is a set of pairs 〈c, p〉 ∈ C ×P , representing deprecated periods p
of courses c

• HasEC maps courses to numbers of weekly unit-length events
• HasStud maps courses to numbers of enrolled students
• HasMinD maps courses to recommended minimum numbers of days

of instruction per week
• Teaches maps teachers to disjunctive sets of elements of C
• HasCap maps rooms to their capacity
• HasP maps days to tuples of corresponding periods in ascending

order.

Given this input, the task is to assign events to rooms and periods so
that:

• for each course, HasEC[c] events are timetabled
• no two events take place in the same room at the same period
• no two events of one course are timetabled at the same period
• events of no two courses in a single curriculum are taught at the

same time
• events of no two courses taught by a single teacher are timetabled

at the same period
• for all 〈c, p〉 ∈ F , events of course c are not taught at period p
• the number of students left without a seat, summed across all events,

is minimised with weight 1
• the number of events timetabled for a curriculum outside of a single

consecutive block of two or more events per day, summed across all
curricula, is minimised with weight 2

• the number of missing days of instruction, summed across all
courses, is minimised with weight 5.

At the heart of most timetabling and rostering problems, including
the Udine problem, there are multiple simultaneous all different

Penalising Patterns in Timetables 3

constraints. The problem of finding a bi-partite matching satisfying
multiple simultaneous all different constraints is closely related
to the Graph Colouring Problem [4]. In integer programming, most
researchers [8, for example] study a natural assignment-type formula-
tion, although some focus also on a binary encoded formulation [9],
a scheduling formulation [10], and four other distinct formulations. A
brief survey can be seen in [11]. For timetabling applications, a clique-
based formulation has recently been proposed [11]: assuming there are
courses with multiple events per week, it is possible to use array T
of binary decision variables indexed with periods, rooms and courses.
Notice the difference between courses and events. T [p, r, c] being set
to one indicates course c is being taught in room r at period p. The
corresponding hard constraints are:

∀c∈C
∑
p∈P

∑
r∈R

T [p, r, c] = HasEC[c]

(1)
∀p∈P
∀r∈R

∑
c∈C

T [p, r, c] ≤ 1 (2)

∀p∈P
∀c∈C

∑
r∈R

T [p, r, c] ≤ 1 (3)

∀p∈P
∀t∈T

∑
r∈R

∑
c∈Teaches[t]

T [p, r, c] ≤ 1 (4)

∀p∈P
∀u∈U

∑
r∈R

∑
c∈Inc[u]

T [p, r, c] ≤ 1 (5)

∀〈c,p〉∈F
∑
r∈R

T [p, r, c] = 0 (6)

Soft constraints in timetabling problems vary widely from institu-
tion to institution [12], but most notably penalise patterns in timeta-
bles [13]. Their integer programming formulations, although often cru-
cial for the performance of the model, are still largely unexplored. Al-
though instances of up to two hundred events with dozens of distinct
enrolments are now being solved to optimum almost routinely [14],
larger instances are still approached only via heuristics.

Out of the three soft constraints in the Udine Course Timetabling
problem, the minimisation of the number of students left without a seat
can be formulated using a single term in the objective function:∑

r∈R

∑
p∈P

∑
c∈C

HasStud[c]>
HasCap[r]

T [p, r, c] (HasStud[c]−HasCap[r]) .

4 Jakub Mareček et al.

The second soft constraint, minimising the number of missing days
of instruction summed across all courses, can be formulated using two
auxiliary arrays of decision variables. The first binary array, CTT, is
indexed with courses and days. CTT[c, d] being set to one indicates
there are some events of course c held on day d. The other array of
integers, Miss, is indexed with courses. The value of Miss[c] is bounded
below by zero and above by the number of days in a week and repre-
sents the number of days course c is short of its recommended days of
instruction. This enables addition of the following constraints:

∀c∈C
∀d∈D

∀p∈HasP[d]

∑
r∈R

T [p, r, c] ≤ CTT[c, d] (7)

∀c∈C
∀d∈D

∑
r∈R

∑
p∈HasP[d]

T [p, r, c] ≥ CTT[c, d] (8)

∀c∈C
∑
d∈D

CTT[c, d] ≥ HasMinD[c]−Miss[c] (9)

The term 5
∑

c∈C Miss[c] can then be added to the objective function.

3 Pattern Penalisation by Feature

The natural formulation of penalisation of patterns of classes and free
periods in daily timetables for curricula goes “feature by feature”,
where feature is described relatively to a particular position in a daily
timetable, for instance as “a class in period one with period two free”.
This formulation then uses an auxiliary binary array M , indexed with
curricula, days and features, where M [u, d, f] being set to one indicates
feature f is present in the timetable for curriculum u and day d. The
number of features to check, |Check|, obviously depends on the num-
ber of periods per day. In the case of four periods per day, we have the
following constraints:

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈HasP[d]∑
c∈Inc[u]

∑
r∈R

(T [p1, r, c]− T [p2, r, c]) ≤ M [u, d, 1] (10)

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈HasP[d]∑
c∈Inc[u]

∑
r∈R

(T [p4, r, c]− T [p3, r, c]) ≤ M [u, d, 2] (11)

Penalising Patterns in Timetables 5

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈HasP[d]∑
c∈Inc[u]

∑
r∈R

(T [p2, r, c]− T [p1, r, c]− T [p3, r, c]) ≤ M [u, d, 3] (12)

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈HasP[d]∑
c∈Inc[u]

∑
r∈R

(T [p3, r, c]− T [p2, r, c]− T [p4, r, c]) ≤ M [u, d, 4] . (13)

The third term in the objective function is then

2
∑
u∈U

∑
d∈D

∑
s∈Check

M [u, d, s] . (14)

This formulation, referred to as T (for “traditional”) below, leaves
plenty of room for improvement in terms of performance.

4 Pattern Penalisation by Enumeration

Considerable improvement in the performance of pattern penalisation
can be gained by introducing the concept of the enumeration of pat-
terns. It is obviously possible to pre-compute a set B of n + 2 tuples
w, x1, . . . , xn,m, where n is the number of periods per day, xi is one
if there is instruction in period i of the daily pattern and minus one
otherwise, w is the penalty attached to the pattern, and m is the sum
of positive values xi in the patterns decremented by one. There are
several applications of this concept.

In a purely enumerative Formulation E, the array M is replaced with
an array W indexed with curricula and days, and constraints (10)–(13)
are (in the case of four periods per day) replaced with:

∀〈w,x1,x2,x3,x4,m〉∈B ∀u∈U ∀d∈D ∀〈p1,p2,p3,p4〉∈HasP[d]

w (x1

∑
c∈Inc[u]

∑
r∈R

T [p1, r, c] + x2

∑
c∈Inc[u]

∑
r∈R

T [p2, r, c]

+ x3

∑
c∈Inc[u]

∑
r∈R

T [p3, r, c] + x4

∑
c∈Inc[u]

∑
r∈R

T [p4, r, c]−m)

≤ W [u, d] . (15)

The corresponding Term 14 in the objective function is then replaced
with 2

∑
u∈U

∑
d∈D W [u, d].

6 Jakub Mareček et al.

In an alternative Formulation ET, both arrays M and W are used,
together with constraints (10)-(15). Term 14 in the objective function
can then be replaced with:∑

u∈U

∑
d∈D

∑
s∈Check

M [u, d, s] +
∑
u∈U

∑
d∈D

W [u, d] . (16)

This Term 16 could perhaps better guide the search than either of the
terms involving only M or only W .

In yet another Formulation ETP, Formulation ET is strengthened
using constraints:∑

u∈U

∑
d∈D

W [u, d]−
∑
u∈U

∑
d∈D

∑
s∈Check

M [u, d, s] = 0 (17)

∀u∈U
∑
d∈D

W [u, d]−
∑
d∈D

∑
s∈Check

M [u, d, s] = 0 (18)

∀u∈U
∀d∈DW [u, d]−

∑
s∈Check

M [u, d, s] = 0 . (19)

Finally in Formulation TP, the original Formulation T could be
strengthened using constraints resembling (15), whose right-hand side
is replaced with

∑
s∈Check M [u, d, s].

5 Empirical Results

The five formulations, together with Formulation C of the decision ver-
sion of graph colouring, have been encoded in Zimpl [15] and tested
on four real-life instances from the University of Udine School of En-
gineering [6] and 18 semi-randomly generated instances, available from
the authors’ website3. The results in Table 1 have been obtained with
SCIP 0.82 using SoPlex, the present-best freely-available integer pro-
gramming solver from Berlin [16], running on Linux-based Sun V20z
with dual Opteron 248 and 2 GB of memory. Notice that all constraints
were given explicitly in these experiments, although extended formu-
lations seem to promise considerably better performance when the ad-
ditional constraints are added only dynamically in a branch-and-cut
algorithm. Judging from less systematic experiments using larger in-
stances and ILOG CPLEX version 10.01, the performance gains are
the more pronounced, the larger and the denser the instances are.

3 http://cs.nott.ac.uk/~jxm/timetabling

Penalising Patterns in Timetables 7

Table 1. Performance of five formulations of pattern penalisation: instance
name, number of events, occupancy in percent, and either the run time needed
to reach the optimality, or the gap remaining after two hours of solving. A
blank indicates no feasible solution has been found

Instance Ev. Occ. C T TP E ET ETP

udine1 207 86 (2 s) (1417 s) (1231 s) 500.00 % (655 s) (916 s)
udine2 223 93 (10 s) 42/0 49/0 44/0 48/0
udine3 252 97 (25 s) 638.21 % 470.54 % 755.46 %
udine4 250 100 (28 s) 4800.00 % 4500.00 %
rand1 100 70 (3 s) (345 s) (434 s) 37/0 (1134 s) (567 s)
rand2 100 70 (2 s) (888 s) (610 s) 0.28 % (615 s) 0.02 %
rand3 100 70 (1 s) (561 s) (440 s) 0.52 % (751 s) (1228 s)
rand4 200 70 (21 s) 1.62 % 2.25 % 2.25 % 0.50 %
rand5 200 70 (30 s) 2.89 % 0.11 % 0.03 % 0.31 %
rand6 200 70 (25 s) 0.57 % 0.82 % 0.79 %
rand7 300 70 (213 s) 0.63 %
rand8 300 70 (132 s) 8.76 %
rand9 300 70 (113 s) 1.22 %
rand10 100 80 (0 s) (363 s) (2417 s) 28.24 % (337 s) (1154 s)
rand11 100 80 (2 s) (242 s) (428 s) 15.88 % (572 s) (679 s)
rand12 100 80 (0 s) (403 s) (511 s) 58.59 % (635 s) (413 s)
rand13 200 80 (31 s) 4.88 % 4.88 % 40.24 % 19.51 %
rand14 200 80 (34 s) 0.25 % 0.11 % 0.52 %
rand15 200 80 (38 s) 0.24 % 0.43 % 0.73 %
rand16 300 80 (136 s) 42.46 %
rand17 300 80 (143 s)
rand18 300 80 (165 s) 1.27 %

6 Conclusions

The formulation of soft constraints penalising patterns in timetables
of individual students or groups of students is crucial for the perfor-
mance of integer programming formulations of timetabling with soft
constraints. The presented formulations penalise patterns not only by
feature, but also by enumeration of patterns over daily timetables. They
might prove to be a good starting point for further research into branch-
and-cut algorithms for timetabling with soft constraints.

Acknowledgements. The authors are grateful to Andrea Schaerf and
Luca Di Gaspero, who kindly maintain the Udine CTT Problem. Hana
Rudová has been, in part, supported by Project MSM0021622419 of
MŠMT.

8 Jakub Mareček et al.

References

1. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Stiehr, G.: An
annotated bibliography of personnel scheduling and rostering. Ann. Oper.
Res. 127 (2004) 21–144

2. Burke, E.K., Petrovic, S.: Recent research directions in automated
timetabling. European J. Oper. Res. 140(2) (2002) 266–280

3. Petrovic, S., Burke, E.K.: University timetabling. In: Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. CRC Press,
Boca Raton, FL (2004) 1001–1023

4. Burke, E.K., de Werra, D., Kingston, J.H.: Applications to timetabling.
In: Handbook of Graph Theory. CRC, London, UK (2004) 445–474

5. McCollum, B.: University timetabling: Bridging the gap between research
and practice. In: Practice and Theory of Automated Timetabling, PATAT
2006, Berlin, Springer (2007)

6. Gaspero, L.D., Schaerf, A.: Multi neighborhood local search with appli-
cation to the course timetabling problem. In: Practice and Theory of
Automated Timetabling, PATAT 2002, Berlin, Springer (2003) 262–275

7. Gaspero, L.D., Schaerf, A.: Neighborhood portfolio approach for local
search applied to timetabling problems. J. Math. Model. Algorithms 5(1)
(2006) 65–89

8. Méndez-Dı́az, I., Zabala, P.: A cutting plane algorithm for graph coloring.
Discrete App. Math. (2008) In press.

9. Lee, J.: All-different polytopes. J. Comb. Optim. 6(3) (2002) 335–352
10. Williams, H.P., Yan, H.: Representations of the all different predicate of

constraint satisfaction in integer programming. INFORMS J. Comput.
13(2) (2001) 96–103

11. Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: On a clique-
based integer programming formulation of vertex colouring with
applications in course timetabling. Technical report (2007) at
http://arxiv.org/abs/0710.3603.

12. Burke, E.K., Elliman, D., Ford, P.H., Weare, R.F.: Examination
timetabling in british universities: A survey. In: Practice and Theory
of Automated Timetabling, PATAT 1995, Berlin, Springer (1996) 76–90

13. Rudová, H., Murray, K.: University course timetabling with soft con-
straints. In: Practice and Theory of Automated Timetabling, PATAT
2002, Berlin, Springer (2003) 310–328

14. Avella, P., Vasil’ev, I.: A computational study of a cutting plane algorithm
for university course timetabling. J. Scheduling 8(6) (2005) 497–514

15. Koch, T.: Rapid Mathematical Programming. PhD thesis, Berlin (2004)
16. Achterberg, T.: Constraint Integer Programming. PhD thesis, Berlin

(2007)

Index

constraint
all different, 2
soft, 3, 6

graph
colouring, 1, 2

pattern

penalisation, 1
by enumeration, 5
by feature, 4

programming
integer, 1

timetabling, 1
university course, 1, 6

