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Abstract. In this work we analyze the performance of scheduling algo-
rithms with respect to fairness. Existing works frequently consider fair-
ness as a job related issue. In our work we analyze fairness with respect to
different users of the system as this is a very important real-life problem.
First, we discuss how fair are selected popular scheduling algorithms with
respect to different users of the system. Next, we present an extension to
the well known Conservative backfilling algorithm. Instead of “ad hoc”
decisions, the schedule is now created subject to evaluation and optimiza-
tion. Notably, the fairness is considered as an important metric, which
accompanies standard performance related metrics such as slowdown or
wait time. To achieve that, an inclusion of fairness as an optimization
criterion is proposed. The new extension improves the performance and
fairness of Conservative backfilling with respect to other classical tech-
niques such as FCFS, EASY backfilling or aggressive backfilling without
reservations.
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1 Introduction

This paper is inspired by the lessons learned over the past years when analyzing
the job scheduling problem in the Czech National Grid Infrastructure MetaCen-
trum [24]. During that time it became apparent that for satisfactory scheduling
several major principles should be met. First of all, the scheduler must guarantee
good performance regarding classical performance related metrics such as low
job wait times and slowdowns and high system utilization. At the same time,
fairness has shown to be one of the most important factors to keep users satisfied.
Therefore the users should be treated in a fair fashion, such that the available
computing power is fairly distributed among them [13]. Last but not least, the
predictability, i.e., planning functionality [10, 25] was found to be very useful as
it allows users to better understand when and where their jobs will be executed.
In fact, even experienced users often do not understand the scheduling decisions
as delivered by existing scheduler that does not use planning functionality.

In order to deal with this situation we have proposed an optimization proce-
dure designed to improve the performance of well known Conservative backfilling
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algorithm [4, 31, 22]. The choice of Conservative backfilling is straightforward as
it allows predictability by establishing reservation for every waiting job. In Con-
servative backfilling, the plan of job reservations is created in an “ad hoc” fashion
as new jobs arrive. This approach may not guarantee good solutions as previ-
ously established scheduling decisions are fixed and do not change even when it
is obvious that better solution exists. At such situation it is often useful to “re-
consider” previous decisions. For this purpose we apply two core strategies: the
evaluation procedure and the optimization procedure. The evaluation is used to
identify inefficient scheduling decisions and it guides the optimization procedure
toward better schedules. Beside common performance related criteria it also fo-
cuses on the problem of maintaining fairness among different users of the system
as this is in fact one of the most important features that a production system
should guarantee. Together, the proposed extension improves the performance
and fairness of the original Conservative backfilling with respect to other classi-
cal techniques such as FCFS, EASY backfilling or aggressive backfilling without
reservations.

The paper is organized as follows. First, we define the studied problem and
discuss suitable optimization criteria that are lately applied in our study. Next
we discuss popular scheduling algorithms, closely describing their strengths and
weaknesses while emphasizing fairness related issues. Section 4 presents applied
optimization of the Conservative backfilling, i.e., the evaluation procedure and
the optimization metaheuristic. Following section presents experimental evalua-
tion where the proposed extension of Conservative backfilling is experimentally
compared with the original Conservative backfilling as well as with other popular
scheduling algorithms such as FCFS, EASY backfilling or aggressive backfilling
without reservations. Finally we conclude our paper with a short summary and
we discuss the future work.

2 Problem Description

Let us briefly define the considered job scheduling problem as well as the applied
optimization criteria that have been used to express the general requirements on
the proposed job scheduler.

2.1 System Description

We consider a classical scenario where the system is managed by one centralized
scheduler, which has complete control over all jobs and system resources.

Job represents a user’s application that may require one (sequential) or more
CPUs (parallel). Also the arrival time and the job processing time are specified.
There are no precedence constraints among jobs and we consider neither job
preemptions nor migrations from one machine to another. Each job has its owner.
When needed, the runtime estimates are precise (perfect) in this study.

The system is composed of one or more computer clusters and each cluster
is composed of several machines. So far, we expect that all machines within one
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cluster have the same parameters. Those are the number of CPUs per machine
and the CPU speed. All machines within a cluster use the Space Slicing processor
allocation policy [6], which allows the parallel execution of several jobs at the
cluster when the total amount of requested CPUs is less or equal to the number
of CPUs of the cluster. Therefore, several machines within the same cluster can
be co-allocated to process a parallel job. On the other hand, machines belonging
to different clusters cannot be co-allocated to execute the same parallel job.

As we already briefly mentioned in Introduction, the proposed scheduler
should guarantee both good performance and fairness. Therefore we now define
several criteria that were considered when designing the new scheduler and lately
used when evaluating its performance with respect to other existing scheduling
techniques.

2.2 Classical Performance Related Criteria

There are several popular metrics used to measure the efficiency of scheduling
algorithms. Frequently, makespan and machine usage are used as a general in-
dicator of algorithm’s suitability [40, 39]. However, these criteria are not very
suitable for systems that are running for a long time. In fact, when the consid-
ered time period is long enough, then different algorithms generate similar values
of makespan and machine usage. This is not a surprising fact [8, 20] because in
such case, the resulting makespan—which is then used to calculate the machine
usage— is not controllable by the scheduler since it can never be smaller than
the arrival time of the last job plus its processing time. Then, the utilization is
rather a function of user activity than of scheduler’s performance [8].

Therefore, we have decided to use classical performance related metrics: the
avg. response time [6], the avg. wait time [3] and the avg. bounded slowdown [6].
The avg. response time represents the average time a job spends in the system,
i.e., the time from its submission to its termination. The avg. wait time is the
mean time that the jobs spend waiting before their execution starts. The avg.
bounded slowdown is the mean value of all jobs’ bounded slowdowns. Slowdown
is the ratio of the actual response time of the job to the response time if executed
without any waiting. If a job has a very small runtime it often means that the
job ended prematurely due to some error. As a result, its slowdown can be huge,
which may seriously skew the final mean value. Therefore, so called bounded
slowdown is often applied [4, 6], where the minimal job runtime is guaranteed to
be greater than some predefined time constant, sometimes called a “threshold of
interactivity” [6]. However, there is no general agreement concerning the actual
value of this threshold. Sometimes it is equal to 10 seconds [4, 6], while different
authors use, e.g., 1 minute [37]. Since the resulting value is very sensitive to the
applied threshold value, we set the threshold equal to 1 second in this paper.
It allows us to eliminate problems related to extremely short jobs while keeping
the resulting values close (comparable) to the values of “normal” slowdown in
most cases.

All three criteria are to be minimized. As pointed out by Feitelson et al. [6],
the use of response time places more weight on long jobs and basically ignores
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if a short job waits few minutes, so it may not reflect users’ notion of respon-
siveness. Slowdown reflects this situation, measuring the responsiveness of the
system with respect to the job length, i.e., jobs are completed within the time
proportional to the job length. Wait time criterion supplies the slowdown and
response time. Short wait times prevent the users from feeling that the scheduler
“forgot about their jobs”.

2.3 Fairness Related Criteria

So far, all criteria focused either on the system or the job performance. Still, good
performance is not the only aspect that makes the scheduler acceptable. The
scheduler must be also fair, i.e., it must guarantee that the available computing
power will be fairly distributed among the users of the system. As far as we
know there is no widely accepted standardized metric to measure fairness and
different authors use different metrics [29, 30, 28, 37, 21, 31]. A fair start time
(FST ) metric is used in [29, 21]. It measures the influence of later arriving jobs
on the execution start time of currently waiting jobs. FST is calculated for
each job, by creating a schedule assuming no later jobs arrive. The resulting
“unfairness” is the difference between FST and the actual start time. Similar
metric is so called fair slowdown [31]. The fair slowdown is computed using
FST and can be used to quantify the fairness of a scheduler by looking at the
percentage of jobs that have a higher slowdown than their fair slowdown [31].
Another metric measures to what extent each job was able to receive its “share”
of the resources [30, 28]. The basic idea is that each job “deserves” 1/nt of the
resources, where nt is the number of jobs present in the system at the given
time t. The “unfairness” is computed by comparing the resources consumed by
a job with the resources deserved by the job. An overview of existing techniques
including discussion of their suitability can be found in [26].

Fairness is usually understood and represented as a job related metric, mean-
ing that every job should be served in a fair fashion with respect to other jobs [29,
30, 28, 37, 21, 31]. Such requirements are already partially covered by the com-
mon performance criteria like the slowdown and the wait time that were both
discussed earlier. Moreover, job fairness has been also reflected in the design of
common scheduling algorithms (see Section 3) and the results concerning se-
lected job fairness indicators are well known [30, 28, 37, 31]. In this work, we aim
to guarantee fair performance to different users of the system as well. Therefore,
we apply a well know fair-share principle [13] with respect to different users of
the system. Fair-share tries to minimize the differences among the normalized
mean wait times of all users. Let o be a given user (job owner) in the system and
JOBSo be the set containing jobs of user o. Let rj and Sj denote the arrival
time and start time of given job j respectively. Then the normalized user wait
time (NUWTo) for each user (job owner) o is calculated as shown by Formula 1.

NUWTo =
TUWTo

TUSAo
(1)
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TUWTo =
∑

j∈JOBSo

(Sj − rj) (2)

TUSAo =
∑

j∈JOBSo

(pj · usagej) (3)

Normalized user wait time NUWTo is the total user wait time (see TUWTo

in Formula 2) divided (normalized) by the so called total user squashed area (see
TUSAo in Formula 3), which can be described as the sum of products of the job
runtime (pj) and the number of requested processors (usagej). This user-oriented
metric is based on more general total squashed area metric proposed in [3]. The
normalization is used to prioritize less active users over those who utilize the
system resources very frequently [13]. Such normalization is commonly used as
can be seen, e.g., in the Czech National Grid Infrastructure MetaCentrum [24]
where the normalization is used when monitoring and adjusting fairness in the
production TORQUE scheduling system [1] as well as it was used earlier in the
PBS Pro scheduling system [11]. Similar approach has been also adopted in the
ASCI Blue Mountain supercomputer cluster when establishing job priorities in
the fair-share mechanism [13].

The normalized user wait time (NUWTo) can be used “on the fly” by the
scheduling algorithm to dynamically prioritize the users. Also, it can be used
in the graphs with the experimental results (e.g., Fig. 2) to reflect the resulting
fairness of the applied scheduling algorithm. In this case, the interpretation is
following. The closer the resulting NUWTo values of all users are to each other,
the higher is the fairness. If the NUWTo value is less than 1.0, it means that
the user spent more time by computing than by waiting, which is advantageous.
Similarly, values greater than 1.0 indicate that the total user wait time is larger
than the computational time of his or hers jobs.

3 Fairness vs. Performance in Scheduling Algorithms

In this section we recapitulate several popular scheduling algorithms that are
widely used both in practice and in the literature. We will discuss their strengths
and weaknesses with respect to classical performance related metrics as well as
with respect to fairness related issues.

All production systems support trivial First Come First Served (FCFS)
scheduling policy [11, 23]. FCFS always schedules the first job in the queue,
checking the availability of the resources required by such job. If all the resources
required by the first job in the queue are available, it is immediately scheduled
for the execution, otherwise FCFS waits until all required resources become
available. While the first job is waiting for the execution none of the remaining
jobs can be scheduled, even if the required resources are available. Despite its
simplicity, FCFS approach presents several advantages. It does not require an
estimated processing time of the job and it guarantees that the response time
of a job that arrived earlier does not depend on the execution times of jobs that
arrived later. As there is no “queue jumping” FCFS is in some sense a very fair
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scheduler [25, 31, 30]. On the other hand, if parallel jobs are scheduled then this
fairness related property often implies a low utilization of the system resources,
that cannot be used by some “less demanding” job(s) from the queue [29, 23].
To solve this problem algorithms based on backfilling are frequently used [25].

Algorithms using backfilling are an optimization of the FCFS algorithm that
try to maximize the resource utilization [23]. There are several variants of back-
filling algorithms. The most popular one is the aggressive EASY backfilling [25].
It works as FCFS but when the first job in the queue cannot be scheduled im-
mediately EASY backfilling calculates the earliest possible starting time for the
first job using the processing time estimates of running jobs. Then, it makes
a reservation to run the job at this pre-computed time. Next, it scans the queue
of waiting jobs and schedules immediately every job not interfering with the
reservation of the first job [23]. This helps to increase the resource utilization,
since idle resources are backfilled with suitable jobs, while decreasing the average
job wait time.

EASY Backfilling takes an aggressive approach that allows short jobs to skip
ahead provided they do not delay the job at the head of the queue. The price for
improved utilization of EASY Backfilling is that execution guarantees cannot be
made because it is hard to predict the size of delays of jobs in the queue. Since
only the first job gets a reservation, the delays of other queued jobs may be,
in general, unbounded [25]3. Therefore, without further control, EASY does not
guarantee good fairness.

In order to prevent such situation, the number of reservations can be in-
creased. In case of slack-based [34] and selective backfilling [31] the number of
jobs with a reservation is related to their current wait time and slowdown re-
spectively. Conservative backfilling [4, 31, 22] makes reservation for every queued
job which cannot be executed at the given moment. It means that backfilling is
performed only when it does not delay any previous job in the queue. Clearly,
this reduce the core problem of EASY backfilling where jobs close to but not yet
at the head of the queue can be significantly delayed. The price paid is that the
number of jobs that can utilize existing gaps4 is reduced, implying that more
gaps are left unused in Conservative backfilling than in EASY backfilling [26].
Still, both approaches lead to significant performance improvements compared
to FCFS [26, 7]. As the scheduling decisions are made upon job submittal, it can
be predicted when each job will run, giving the users execution guarantees. Users
can then plan ahead based on these guaranteed response times. Obviously, there
is no danger of starvation as a reservation is made for every job that cannot be
executed immediately. Apparently, such approach places a greater emphasis on
predictability [25, 4] and it is a good compromise between “fair” but inefficient
FCFS and “unfair” but efficient EASY backfilling.

3 If a job is not the first in the queue, new jobs that arrive later may skip it in the
queue. While such jobs do not delay the first job in the queue, they may delay all
other jobs and the system cannot predict when a queued job will eventually run [25].

4 Some authors [26] call the unused CPU time slot a “hole” while others [25, 36] prefer
the term “gap”.
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All previously mentioned variants of backfilling require that each job specifies
its estimated execution time. Therefore, existing systems also support backfilling
without reservations [19, 11] where estimates are not needed at all. In order to
maintain fairness among users, the queue(s) can be ordered according to some
priority mechanism such as fair-share. For example, the TORQUE scheduler [1]
currently used in MetaCentrum [24] uses backfilling without reservations where
each queue is ordered according to priorities computed using the fair-share prin-
ciple. Here, the users of the system are prioritized according to the fair-share
mechanism that balances the amount of consumed CPU time among users. This
means that all jobs belonging to a given user get the priority that is equal to the
user’s priority5. Still, as in the case of EASY backfilling, such techniques can-
not guarantee starvation-free behavior and additional mechanisms are needed to
minimize the risk that the delays of queued jobs become very large.

In this section we tried to mention the most popular scheduling algorithms
and we tried to demonstrate their pros and cons. None of these algorithms suits
our needs perfectly. FCFS is somehow fair but inefficient. EASY backfilling im-
proves the performance significantly but at some situations may degrade the
performance for “unlucky” jobs. Similarly, backfilling without reservations do
not need estimates but it cannot guarantee starvation-free behavior.

From this point of view, Conservative backfilling is a good candidate for
further extension. First, as each job gets a reservation waiting jobs cannot be
delayed by lately arriving jobs, which is fair, at least from the user’s point of
view. Second, job reservations, i.e., the plan of execution, are good for the users
as they can get some sort of guarantee and they “know what is happening”.
Last but not least, the prepared plan of execution can be easily evaluated with
respect to selected optimization criteria, covering both performance and fairness
related objectives. Therefore, possible inefficiencies that can appear in classical
Conservative backfilling can be identified and fixed. For this purpose some form
of metaheuristic algorithm seems to be a natural solution. In the next section
we describe such an extension of the Conservative backfilling.

4 Optimization of Conservative Backfilling

As we mentioned in previous text, we found Conservative backfilling to be a good
initial scheduling technique for our purposes, which included requests of good
performance, fair distribution of available computing power among users and
predictability. In this section we describe the two fundamental techniques used
to improve the overall performance of Conservative backfilling. Those techniques
are evaluation of existing solution and an optimization metaheuristic that im-
proves the quality of generated solution with respect to considered criteria. We
start with a description of the evaluation method.

5 The priority is computed using the Formula 1 that represents the normalized user
wait time NUWTo .
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4.1 Evaluation Procedure

The purpose of the evaluation procedure is to compare two different schedules
and decide, which one is better with respect to applied optimization criteria. As
we already discussed in Section 2, we focus both on the classical and the fair-
ness related criteria. We use the avg. wait time (WT ), the avg. response time
(RT ) and the avg. bounded slowdown (BSD) to measure the performance of
the scheduling algorithm. Each such metric can be easily used when deciding,
which solution is better— the one having smaller values of given metric. When
considering fairness with respect to different users the situation is more com-
plicated. The fairness related normalized user wait time (NUWTo) described
in Section 2.3 cannot be directly used as it is only a per user metric. For our
purpose we needed a function that for given schedule returns a single value.
Therefore, we have proposed a criterion called fairness (F ), which is computed
as shown by Formula 5.

UWT =
1

u

u∑
o=1

NUWTo (4)

F =
u∑

o=1

(UWT −NUWTo)
2

(5)

First, we calculate the mean user wait time (UWT ) using the values of
NUWTo as shown in Formula 4. Then the fairness F is calculated by the For-
mula 5. The squares in F definition guarantee that only positive numbers are
summed and that higher deviations from the mean value are more penalized
than the small ones. This approach has been inspired by the widely used Least
Squares method [38] where similar formula of squared residuals is minimized
when fitting values provided by a model to observed values.

The fairness (F ) criterion is used during the evaluation of performed schedul-
ing decisions, i.e., “inside” the optimization procedure (see Section 4.2). When
two possible solutions are available, then the values of F are computed for both
of them. The one having smaller F value is considered as more fair. The squares
used during computation of F help to highlight unfair assignments, which is
very favorable when performing scheduling decisions. Sadly, the squares basi-
cally prevent us to reasonably interpret the resulting F values as it was possible
in case of the NUWTo criterion (see discussion in Section 2.3). This is the reason
why NUWTo is used in graphs to display how fair the solution has been with
respect to different users while F is used when evaluating two different schedules
“inside” the optimization algorithm.

Together, there are four criteria to be optimized simultaneously. Each crite-
rion produces one value characterizing the solution. The final decision on which
of the two solutions is better is implemented in separate function, called Select-
Better(scheduleA, scheduleB) which is shown in Algorithm 1. It is a form of
a weight function, which is often used when solving multi-criteria optimization
problems [39, 18, 17]. The SelectBetter function is an extended version of the
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function that has been already successfully used in our previous works [17, 18].
This extension includes the fairness criterion.

Algorithm 1 SelectBetter(scheduleA, scheduleB)

1: compute BSDA, WTA, RTA, FA according to scheduleA;
2: compute BSDB , WTB , RTB , FB according to scheduleB ;

3: vBSD := (BSDA −BSDB)/BSDA;
4: vWT := (WTA −WTB)/WTA;
5: vRT := (RTA −RTB)/RTA;
6: vF := (FA − FB)/FA;
7: weight := vBSD + vWT + vRT + vF ;

8: if weight > 0 then
9: return scheduleB ;
10: else
11: return scheduleA;
12: end if

This function uses two inputs— the two solutions that will be compared. The
scheduleA may represent existing (previously accepted) solution while scheduleB
represents the newly created candidate solution, a product of optimization. First,
the values of used objective functions are computed for both schedules (lines 1–
2). Using them, decision variables vBSD, . . . , vF are computed (see lines 3–
6). Their meaning is following: when the decision variable is positive it means
that the scheduleB is better than the scheduleA with respect to the applied
criterion. Strictly speaking, decision variable defines percentual improvement or
deterioration in the value of objective function of scheduleB with respect to the
scheduleA. Some trivial correction is needed when the denominator is equal to
zero, to prevent division by zero error. To keep the code clear we do not present
it here. It can easily happen, that for given scheduleB some variables are positive
while others are negative. In our implementation the final decision is taken upon
the value of the weight (line 7), which is computed as the (weighted) sum of
decision variables. If desirable, the “importance” of each decision variable can be
adjusted using a predefined weight constant. However, proper selection of these
weights is not an easy task. In this particular case, all decision variables are
considered as equally important and no additional weight constants are used.
When the resulting weight is positive the (candidate) scheduleB is returned as
a better schedule. Otherwise, the (existing) scheduleA is returned.

4.2 Optimization Algorithm

Newly arriving jobs are added into the schedule using classical Conservative
backfilling algorithm. It means that the earliest suitable time slot is found in
existing schedule. Such initial schedule (scheduleinitial) is periodically optimized
with an optimization algorithm. It is a simple metaheuristic that tries to optimize
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the existing scheduleinitial. The algorithm includes an important feature that is
typical for the Tabu search-based algorithms [9, 27]. It is a short term memory
called tabu list where few previously manipulated jobs are stored. If the algorithm
is trying to move some job then this change is not allowed in case that this job
is present in the tabu list. It has limited size and the oldest item is always
removed when the list becomes full. Tabu list helps to protect the algorithm
against short cycles where the same few jobs are repeatedly selected as the move
candidates. The main structure of the algorithm is based on a procedure that has
been already successfully used in our previous work which focused on a different
problem involving minimizing the number of late jobs [17].

Algorithm 2 TabuSearch(scheduleinitial, iterations, time limit)

1: schedulenew := scheduleinitial; schedulebest := scheduleinitial; tabu list := ∅;
2: i := 0;

3: while (i < iterations and time limit not exceeded) do
4: i := i+ 1;
5: job := select random job from schedulenew such that job /∈ Tabu;
6: if job = null then
7: tabu list := ∅; (all jobs were tested, reset the tabu list)
8: continue;
9: end if
10: remove job from schedulenew;
11: compress schedulenew;
12: move job into earliest suitable gap in schedulenew;
13: schedulebest := SelectBetter(schedulebest, schedulenew);
14: schedulenew := schedulebest; (update/reset candidate schedule)
15: if tabu list is full then
16: remove the oldest item;
17: end if
18: tabu list := tabu list ∪ job;
19: end while

20: return schedulebest;

TabuSearch(scheduleinitial, iterations, time limit) optimization algorithm
is described in Algorithm 2. It has three inputs— the schedule that will be op-
timized, the maximal number of iterations and a time limit. In each iteration,
one random non-tabu job selected (line 5). Once the job is selected, it is re-
moved from its current position and the schedule is immediately compressed.
The compression is designed to shift reservations to earlier time slots that could
have appeared as a result of the job removal [14]. This procedure is an anal-
ogy to the method used in Conservative backfilling when job terminates ear-
lier due to an overestimated runtime estimate [25]. During the compression
the relative ordering of job start times is kept [14]. Next, the removed job
is returned to the compressed schedule into the earliest suitable gap and this
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new schedule is evaluated with respect to applied criteria in the SelectBet-
ter(schedulebest, schedulenew) function (see Algorithm 1). If this attempt is
successful SelectBetter returns schedulenew as the new schedulebest, other-
wise schedulebest is not changed (line 13). Next, the schedulenew is updated with
the schedulebest (line 14). Finally, the job is placed into the tabu list (line 18)—
so that it cannot be chosen in the next few iterations—and a new iteration
of the Tabu search starts. If in some iteration all jobs are already in the tabu
list, then the list is emptied and another iteration starts (line 7)6. The cycle
continues until the predefined number of iterations or the given time limit is
reached (lines 3). Then, the schedulebest is returned as the newly found solution
(line 20).

When applied, TabuSearch is executed every 5 minutes of simulation time.
Here we were inspired by the actual setup of the scheduler [1] used in the Meta-
Centrum, which performs periodic priority updates of jobs waiting in the queues
with a similar frequency. The maximum number of iterations is equal to the
number of currently waiting jobs (schedule size) multiplied by 2. The time limit
variable was set to be 2 seconds, which is usually enough to try all iterations.
However, when some higher priority event such as new job arrival or job comple-
tion is detected during TabuSearch execution, the time limit is immediately
set to 0 and the TabuSearch terminates. Therefore, the optimization phase
cannot cause any significant delays concerning job processing and the potential
overhead of optimization is practically eliminated [17].

5 Experiments

This section presents the experimental evaluation where the proposed Tabu
Search optimization technique is experimentally compared with selected pop-
ular scheduling algorithms. Beside common performance related criteria also
the fairness related issues of considered scheduling algorithms are analyzed here.

5.1 Experimental Setup

All experiments have been computed on an Intel Xeon 3.0 GHz machine with
12 GB of RAM using the GridSim [33] based Alea simulator we have imple-
mented [15].

The proposed Tabu search-based optimization (TS) of Conservative backfill-
ing has been evaluated against several existing algorithms that have been all
closely discussed in Section 3. We have considered FCFS, aggressive backfilling
without reservations (BF), EASY backfilling (BF-EASY), Conservative backfill-
ing (BF-CONS) and the aggressive backfilling without reservations prioritized
according to fair-share (BF-FAIR).

6 In the current implementation the tabu list has maximum size of 10 jobs. If all jobs
from the current schedule are in the tabu list, it means that there are at most 10
jobs in the whole schedule.
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Six different data sets from the Parallel Workloads Archive [5] have been used
in the simulation: MetaCentrum (806 CPUs, 103,656 jobs during 5 months),
SDSC BLUE (1,152 CPUs, 243,314 jobs during 34 months), CTC SP2 (338
CPUs, 77,222 jobs during 11 months), HPC2N (240 CPUs, 202,876 jobs dur-
ing 42 months), SDSC SP2 (128 CPUs, 59,725 jobs during 24 months) and
KTH SP2 (100 CPUs, 28,489 jobs during 11 months). If available, the recom-
mended “cleaned” versions of workload logs are always used. Detailed descrip-
tions of these logs are available in the Parallel Workloads Archive [5].

In the experiments, the avg. response time, the avg. wait time and the avg.
bounded slowdown have been measured as the standard performance related
metrics. A bubble chart is used to display corresponding values of wait time
and slowdown simultaneously— the y-axis depicts the avg. wait time while the
size of the circle represents the avg. bounded slowdown. The actual bounded
slowdown value is shown as a label bellow each circle (see Fig. 1).

Concerning fairness, the resulting normalized user wait times NUWTo were
collected for all users. In the next step, we have removed all NUWTo values
that belonged to users who submitted only one job as this represents an extreme
situation. When such user submits the first (and only) job into the system, the
job gets some default priority, since the system cannot compute NUWTo that
is normally used to establish the job priority7. At the same time, other jobs in
the queue often have higher priority, therefore this single job may be delayed by
other high priority jobs. However, as the user do not submit any other job, there
is no way for the scheduler to “fix” this unfair assignment and the resulting
NUWTo may be quite high. Once the set of NUWTo values was reduced as
explained above, the NUWTo values were interpreted in two different ways.
The cumulative distribution function (CDF) of users’ normalized wait times
presents how different scheduling algorithms affect the resulting NUWTo values
for all users of the system. In this case, the CDF is a f(x)-like function showing
the probability that the NUWTo of given user o is less than or equal to x. In
another words, the CDF represents percentage of users having their NUWTo

less than or equal to x. The steeper is the resulting curve the closer (i.e., more
fair) were the NUWTo values of different users. As the resulting distributions
often have very long tails, the maximal NUWTo shown on the x-axis is bounded
by 10.0 for better visibility. The CDFs are accompanied with two additional
metrics which show the arithmetic mean of all normalized user wait times and
the corresponding standard deviation. The smaller the mean and the standard
deviation are the lower were the NUWTo values and the closer (i.e., more fair)
they were. When two or more algorithms have similar CDFs, these two metrics
helps to highlight the differences among algorithms as they can highlight the
influence of the distribution’s long tail.

7 NUWTo cannot be computed because both TUWTo and TUSAo are not known
unless at least one job of given user o completes (see Formulas 1–3).



Performance and Fairness for Users in Parallel Job Scheduling 13

5.2 Experimental Results and Discussion

Fig. 1 presents the avg. wait time, the avg. bounded slowdown (1st and 3rd row)
and the avg. response time (2nd and 4th row) for all six data sets. The fairness
related results for all data sets are shown in Fig. 2. As discussed in Section 5.1,
two different graphs are used to capture the resulting normalized user wait times
(NUWTo). The CDFs of NUWTo distributions are shown in the first and third
row in Fig. 2. The bar charts with the mean of all normalized user wait times
and the corresponding standard deviations are shown in the second and fourth
row in Fig. 2.
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Fig. 1. The avg. wait time and the avg. slowdown (1st and 3rd row), and the avg.
response time (2nd and 4th row) for all six data sets.

Let us discuss the results of the experiments. In all experiments FCFS per-
formed very bad, which is not surprising as the applied workloads represent
reasonably utilized systems with parallel jobs where FCFS is known to be inef-
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ficient [12, 23, 25]. Therefore—with the exception made in case of CDFs—the
results of FCFS are not presented in the charts for better visibility, as in all cases
the results of FCFS were very bad and off-scale high.

Concerning the avg. wait time (1st and 3rd row in Fig. 1) and the avg.
response time (2nd and 4th row in Fig. 1), original Conservative backfilling (BF-
CONS) does not work very well with respect to other backfilling algorithms, as
both BF-EASY or BF produce better results in most cases. This is not surprising
as these issues have been already addressed in several works [31, 32, 26]. Basically,
the problem here is that establishing reservation for every job can be less efficient
than aggressive approaches as used in BF or BF-EASY. Reservations decrease
the opportunities for backfilling, due to the blocking effect of the reserved jobs
in the schedule [31, 4]. On the other hand, the slowdown (see circle labels in
the bubble charts in Fig. 1) is often slightly better for BF-CONS as no job can
be delayed. This is a normal behavior also observed in previous works [31, 4].
BF-FAIR is also competitive, however in case of SDSC SP2 it does not perform
very well with respect to the avg. wait time. On the other hand, TS produces
the best wait times, response times and slowdowns in all six cases. Clearly, TS
significantly improves the otherwise relatively weak performance of Conservative
backfilling. These results indicate that the “ad hoc” manner used to establish
reservations in BF-CONS is not very efficient and can be easily improved using
the evaluation and optimization techniques.

In case of fairness related criteria (see Fig. 2), the results clearly demonstrate
that standard solutions such as FCFS, BF, BF-EASY or BF-CONS are not very
good to guarantee good fairness with respect to different users since they do not
involve any suitable mechanism for this purpose. Especially FCFS is truly unfair
for users as can be seen in the CDFs (1st and 3rd row in Fig. 2). In general,
BF, BF-EASY and BF-CONS produce worse results than BF-FAIR or TS in
most cases. While the differences in the CDFs are not huge, there are typically
several users with very high (unfair) NUWTo when BF, BF-EASY or BF-CONS
is used, respectively. This unfairness significantly increases the arithmetic mean
of all normalized user wait times and the corresponding standard deviation as
can be seen in the second and fourth row in Fig. 2.

From this point of view, a simple extension involving fair-share based priori-
ties as applied in BF-FAIR algorithm can significantly improve the fairness of the
solution with respect to different users. In most situations BF-FAIR generates
better, i.e., steeper CDFs of normalized user wait times (see 1st and 3rd row in
Fig. 2) as well as better, i.e., lower mean values and standard deviations (2nd
and 4th row in Fig. 2) than FCFS or other backfilling algorithms. Again, TS op-
timization procedure shows great potential when improving the fairness of the
original BF-CONS. TS can guarantee fairness on the same or even higher level
as BF-FAIR algorithm does, thanks to the applied extensions that involve sched-
ule evaluation and optimization. Clearly, good results in standard performance
metrics (see Fig. 1) are not achieved at the expenses of fairness (see Fig. 2).

As discussed in Section 2.1, if needed, the runtime estimates are precise (per-
fect) in this study. This setup has been used in order to provide “ideal” conditions
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Fig. 2. The CDFs of normalized user wait times (1st and 3rd row), and the mean of
normalized user wait times and the corresponding standard deviation (2nd and 4th
row) for all six data sets.

for all algorithms that somehow use reservation(s). This approach minimizes the
effect of inaccuracy that may sometimes produce “confusing” results [35, 36].
One may suggest that the proposed extension of Conservative backfilling may
not work that well as soon as realistic, i.e., inaccurate estimates are used. How-
ever, as we observed in our recent studies [14, 16], the inaccuracy can be handled
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efficiently if proper “recovery” methods are applied. For example, the inefficiency
caused by early job completions can be minimized by applying schedule com-
pression as discussed in Section 4.2 or in [25, 14]. Moreover, as the optimization
procedure follows a “gap filling” approach (see line 12 in Algorithm 2) it can be
flexibly used to further improve the schedule once the compression phase termi-
nates [14, 16]. Similarly to, e.g., EASY backfilling, it is favorable when the users’
estimates are heterogeneous. When there are only few popular estimates (e.g.,
3 popular estimates), the performance of the proposed technique is similar to
the performance of the backfilling solutions [14]. At such situation, the limited
diversity of runtime estimates prevents us from building efficient schedules, since
there is no good opportunity for successful optimization [14].

6 Conclusion

This paper addressed a real life-based job scheduling problem. The goals were
to maintain the fairness among different users of the system while keeping good
performance regarding classical criteria such as slowdown or wait time. Sev-
eral existing algorithms have been analyzed with respect to these two goals.
Moreover, an extension of the well known Conservative backfilling has been pro-
posed in order to guarantee good fairness and performance. The extension uses
optimization procedure, which allows to improve the quality of the schedule.
Optimization is guided by the evaluation that is performed subject to applied
objective functions. Experimental evaluation demonstrates that the proposed
extension represents significant improvement by means of fairness and perfor-
mance over several existing algorithms including FCFS, Conservative and EASY
backfilling as well as aggressive backfilling without reservations.

Just like the original Conservative backfilling, the current solution still sup-
ports predictability as reservations are established for every job. However, the
optimization technique can delay particular jobs with respect to their initial
reservations if it improves the overall quality of the schedule. As this behavior
may be problematic in some cases, we plan to solve this issue in the future. Cur-
rently, we are working on a closely related scheduling approach involving evalua-
tion and optimization algorithms [2] within the production TORQUE scheduler
that is used in the Czech National Grid Infrastructure MetaCentrum.
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