
Local Search for Grid Scheduling

Dalibor Klusáček
Luděk Matyska
Hana Rudová

Faculty of Informatics, Masaryk University
Botanická 68a, Brno 602 00

Czech Republic
{xklusac, ludek, hanka}@fi.muni.cz

Ranieri Baraglia
Gabriele Capannini

ISTI,CNR
Via Moruzzi, 1

Pisa, Italy
{ranieri.baraglia, gabriele.capannini}@isti.cnr.it

Abstract

This work introduces local search based algorithms
as a new technique for the Grid scheduling problem.
Specific algorithms based on dispatching rules and lo-
cal search were proposed and implemented to gener-
ate schedule for dynamically arriving jobs. Algorithm
performance was compared with typical queue-based
algorithms on the basis of objective function optimi-
sation and time required to generate scheduling solu-
tions. Grid environment was simulated by Alea Simu-
lator which is based on modified and extended GridSim
toolkit. The results showed that local search based al-
gorithms may be promising technique with good overall
performance, providing better results than queue-based
approaches while still fast enough to provide solution in
a reasonable time.

Introduction
Grid scheduling is a very complex problem where ap-
plication of advanced scheduling techniques is often not
easy. Current scheduling production systems such as
Condor (Thain, Tannenbaum, & Livny 2005), LSF (Xu
2001) or PBS (Feng, Misra, & Rubenstein 2007) are
usually queue-based systems using scheduling policies.
Also the more complex tools and systems such as Grid
Service Broker (Venugopal, Buyya, & Winton 2004) or
GridWay (Huedo, Montero, & Llorente 2005) emphasize
scheduling policies, i.e., job and resource prioritization poli-
cies.

Our intent is to study the schedule-based approach, where
a schedule is constructed and optimised. We introduce ad-
vanced scheduling algorithms based on local search and dis-
patching rules (Glover & Kochenberger 2003; Pinedo 2005)
to achieve this goal. In comparison with queue-based sys-
tems, schedule-based approach maintains information not
only about resources but also about the run time of all
jobs (Keller & Reinefeld 2001). We concentrate on a dy-
namic scenario when jobs arrive over the time (He, Sun,
& von Laszewski 2003) and disappear from the scheduling
process at their completion time. Here application of local
search algorithms seems to be very suitable but according to
our knowledge it has not been applied to dynamic problems

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

yet. The existing approaches applying local search to the
static problems (Armentano & Yamashita 2000; Baraglia,
Ferrini, & Ritrovato 2005) are based on the assumption that
all the jobs and resources are known in advance and the local
search for all jobs must be performed at once. This is poten-
tially very time consuming, and we propose an incremental
approach, when the current existing local search solution is
modified after arrival of new job(s) through simple moves of
jobs within the schedule.

This paper describes application of the tabu search al-
gorithm (Glover & Kochenberger 2003) used to optimise
initial schedule computed with the help of dispatching
rules (Pinedo 2005) in the dynamic Grid environment. Qual-
ity and time requirements of these algorithms were com-
pared with typical queue-based algorithms using our Grid
scheduling simulation environment—the Alea Simulator.
Performed experiments show interesting improvement in the
value of the objective function using the schedule-based ap-
proach compared to the queue-based systems.

Applied Approaches
In this work the goal of the scheduler was to minimize the
number of jobs that did not meet their deadline (Capannini et
al. 2007). The smaller this number was the higher QoS was
provided to the users, i.e., job owners. We use the following
setup: A job may require one or more CPUs, machines may
have different number of CPUs with a different CPU speed.

The initial schedule was generated using composed dis-
patching rule Minimum Tardiness Earliest Deadline First
(MTEDF). It works in two steps—first the machine with
the smallest expected tardiness of jobs assigned to it is se-
lected. Then the newly arrived job is placed into this ma-
chine’s schedule using Earliest Deadline First (EDF) strat-
egy (Pinedo 2005). MTEDF is applied every time a new job
arrives and it constructs new schedule using previously com-
puted schedule. This saves the time since the schedule does
not have to be computed from scratch. Currently schedule is
represented by simplified data structure. For each machine a
list of jobs planned on this machine is maintained. The job
order inside the list defines the order of job execution on the
corresponding machine. These lists together represent the
schedule.

Tabu Search (TS) optimisation is then applied to this
schedule. The job with the highest expected delay wrt. its



deadline is moved. To minimize the size of the neighbor-
hood we only allow moves onto machines with smaller ex-
pected tardiness of assigned jobs. Once a machine is se-
lected the job is placed into it’s schedule using EDF strategy
and the value of the objective function is computed. If the
value is better, i.e., the number of jobs not meeting their
deadline is smaller, the move is accepted. Once the job was
moved it is placed into the tabu list to prevent cyclic moves.

As a comparison to these techniques we used First Come
First Served (FCFS), Earliest Deadline First (EDF) and
Easy Backfilling (BF) (Lifka 1995; Techiouba et al. 2007)
algorithms as a typical queue-based scheduling policies.

Alea Simulator
As a part of our work we have developed Alea Simulator 1,
a GridSim (Buyya & Murshed 2002) based Grid simulator.
It extends the original Java based toolkit with various new
features such as parallel job support, dynamic job arrivals
etc. Alea provides newly developed extensible centralized
scheduler which allows to implement various scheduling al-
gorithms and compare their performance easily. Both the
queue-based as well as schedule-based algorithms can be
simulated. Different criterion such as makespan, average
flow time, or total tardiness may be used and then optimised
by the scheduler. The whole simulator is implemented as a
modular environment which admits to extend the simulator
with new features such as new scheduling algorithms or job
parameters and to model different types of problems like se-
quential or parallel jobs, etc. All experiments presented in
this work were performed in the Alea Simulator.

Experimental Results
The experiments were done for 1500 dynamically arriving
jobs with average execution time 1600 s. Jobs may be ei-
ther sequential or parallel (in average job needs 4.5 CPUs).
70% jobs have deadline parameter which denotes maximal
completion time of this job as was requested by the user
before the job submission. The Grid consists of 150 ma-
chines with 2-16 CPUs, different machines may have differ-
ent speed. The objective criterion was to minimize num-
ber of jobs that did not meet their deadline. The com-
parison of the queue-based and schedule-based algorithms
was based on this objective criterion and the time required
to generate scheduling decision for one job. Experimental
data sets were generated synthetically using exponential dis-
tribution with the generator from (Capannini et al. 2007;
Techiouba et al. 2007). We tested seven different loads of
the system. In the first case jobs were arriving frequently
so the number of jobs waiting for their execution was very
high. Remaining cases had stepwise higher average job
inter-arrival time so the load of the system was lower.

Figure 1 shows that the schedule-based approach outper-
forms the queue-based algorithms in all situations. The Fig-
ure 2 shows the average scheduling time for one job. The
time complexity depends on the number of jobs present in
the queue/schedule. Tabu search time requirements are quite

1See http://www.fi.muni.cz/˜xklusac/alea/ for
the distribution and source code.

Figure 1: Number of jobs not meeting their deadline.

Figure 2: Average job scheduling time in milliseconds.

stable because it is limited with the number of iterations
while in case of backfilling the time strongly depends on
the number of jobs waiting in the queue. If the job inter-
arrival time was high then both the queue or the schedule
was almost empty most of the time so the benefit of EDF,
backfilling or tabu search did not appear. When comparing
the average job scheduling time for particular methods it is
also important to realize that one job is scheduled in mil-
liseconds but inter-arrival times are 2 seconds in the worst
case. So, the time efficiency of algorithms is not so critical
in comparison with the optimisation quality.

Discussion
The schedule-based approach is a promising direction in the
area of the Grid scheduling as it was shown for example
by the CCS Planning Manager (Keller & Reinefeld 2001).
However, there is no work done in the area of local search
based methods applied to the dynamic environment. Pre-
liminary results showed certain improvement even when the
simplified algorithms and data structures representing the
schedule were used. Local search is often considered to
be very time consuming algorithm. Therefore, we propose
an incremental approach based on a previously computed
schedule that has very reasonable runtime requirements. An-
other advantage is the stability of this approach. Application
of a dispatching rule is rather fast and it always generates ac-
ceptable schedule, so we can stop local search optimisation



at any time if prompt decisions are required (Bent & Hen-
tenryck 2004).

We can see that schedule-based approaches outperform
queue-based approaches. However, improvements of local
search over dispatching rules is currently more significant in
some cases only and more experiments are needed to fully
exploit the local search algorithms potential.

We see the major advantage of the local search based al-
gorithms in the possibility to directly and extensively ma-
nipulate with the explicit schedule. Using it, we plan to be
able to predict the resource load at any specified time. We
will use this information to move jobs to the time where the
capacity of resources is not fully occupied by the currently
planned jobs. This feature can be compared with the ca-
pability of backfilling algorithms where unused capacity of
resources is to be filled by other waiting jobs. Even more
local search moves may include a swap of two jobs which
can also improve the quality of the schedule (e.g., late jobs
is swapped with the job having a later deadline). We be-
lieve that all of that will induce further improvement in the
performance of the local search algorithms.

Conclusion and Future Work
Proposed solution based on the global schedule produced
significantly better optimisation results than queue-based so-
lutions with acceptable run time of both the MTEDF dis-
patching rule and the tabu search. The algorithm demon-
strates promising direction for new efficient local search
based algorithms applicable for Grid scheduling. Also the
Alea Simulator was developed and allowed us to imple-
ment, simulate and compare different algorithms among
each other.

In the future we would like to optimise the local search al-
gorithm to improve its performance and effectiveness. An-
other direction is to study large scale problems with many
parameters, where the complexity of the problem will be-
come very significant. Also, we would like to introduce net-
work simulation, failure tolerance, preemptivity and job mi-
gration together with the use of larger and real workloads
in our simulations to verify algorithm’s performance. More-
over we plan to include proposed algorithms into the PBS
scheduler (Feng, Misra, & Rubenstein 2007) and test them
in the real Grid environment.

Acknowledgments
This work was supported by the Ministry of Education,
Youth and Sports of the Czech Republic under the research
intent No. 0021622419, by the Grant Agency of the Czech
Republic with grant No. 201/07/0205, and by the EU Core-
GRID NoE (FP6-004265).

References
Armentano, V. A., and Yamashita, D. S. 2000. Tabu
search for scheduling on identical parallel machines to
minimize mean tardiness. Journal of Intelligent Manufac-
turing 11:453–460.
Baraglia, R.; Ferrini, R.; and Ritrovato, P. 2005. A
static mapping heuristics to map parallel applications

to heterogeneous computing systems: Research articles.
Concurrency and Computation: Practice and Experience
17(13):1579–1605.
Bent, R., and Hentenryck, P. V. 2004. Online stochastic
and robust optimization. In Proceedings of the 9th Asian
Computing Science Conference (ASIAN’04), volume 3321
of Lecture Notes in Computer Science, 286–300. Springer.
Buyya, R., and Murshed, M. 2002. GridSim: A toolkit for
the modeling and simulation of distributed resource man-
agement and scheduling for Grid computing. The Journal
of Concurrency and Computation: Practice and Experi-
ence (CCPE) 14:1175–1220.
Capannini, G.; Baraglia, R.; Puppin, D.; Ricci, L.; and
Pasquali, M. 2007. A job scheduling framework for large
computing farms. In SC07 International Conference for
High Performance Computing, Networking, Storage and
Analysis. To appear.
Feng, H.; Misra, V.; and Rubenstein, D. 2007. PBS: a uni-
fied priority-based scheduler. SIGMETRICS Performance
Evaluation Review 35(1):203–214.
Glover, F. W., and Kochenberger, G. A., eds. 2003. Hand-
book of Metaheuristics. Kluwer.
He, X.; Sun, X.; and von Laszewski, G. 2003. QoS guided
min-min heuristic for Grid task scheduling. Journal of
Computer Science and Technology 18(4):442–451.
Huedo, E.; Montero, R.; and Llorente, I. 2005. The
GridWay framework for adaptive scheduling and execution
on Grids. Scalable Computing: Practice and Experience
6(3):1–8.
Keller, A., and Reinefeld, A. 2001. Anatomy of a resource
management system for HPC clusters. Annual Review of
Scalable Computing 3.
Lifka, D. A. 1995. The ANL/IBM SP Scheduling System.
In IPPS ’95: Proceedings of the Workshop on Job Schedul-
ing Strategies for Parallel Processing, 295–303. London,
UK: Springer-Verlag.
Pinedo, M. 2005. Planning and Scheduling in Manufac-
turing and Services. Springer.
Techiouba, A. D.; Capannini, G.; Baraglia, R.; Puppin, D.;
and Pasquali, M. 2007. Backfilling strategies for schedul-
ing streams of jobs on computational farms. CoreGRID
Workshop on Grid Programming Model, Grid and P2P
Systems Architecture, Grid Systems, Tools and Environ-
ments, Greece.
Thain, D.; Tannenbaum, T.; and Livny, M. 2005. Dis-
tributed computing in practice: the Condor experience.
Concurrency - Practice and Experience 17(2-4):323–356.
Venugopal, S.; Buyya, R.; and Winton, L. 2004. A Grid
Service Broker for scheduling distributed data-oriented ap-
plications on global Grids. In MGC ’04: Proceedings of the
2nd workshop on Middleware for grid computing, 75–80.
New York, NY, USA: ACM Press.
Xu, M. Q. 2001. Effective metacomputing using LSF mul-
ticluster. In CCGRID ’01: Proceedings of the 1st Inter-
national Symposium on Cluster Computing and the Grid,
100. Washington, DC, USA: IEEE Computer Society.


