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Abstract

Advanced  collaborative  environments  frequently  need  to  transfer  highly demanding 
multimedia data streams with minimum possible latency. Since bandwidths of the streams are 
close to capacities of currently available links, routing of data transfers therefore requires 
planning with respect to link capacities and latency optimization. This paper describes integer 
linear  programming  techniques  for  optimal  solution  of  the  multimedia  streams  planning 
problem.  Several  methods  for cycle  avoidance  in  transmission graphs and network flows 
formulation  are  proposed.  Performance  of  the  methods  was  evaluated  to  identify  their 
efficiency for real-time planning and to compare it against an earlier constraint programming 
approach applied in an application middleware called CoUniverse. According to the results, 
network flows formulation appears to be the most promising.

1. Introduction

High-end applications in the field of computer supported virtual collaboration are built from 
relatively high number of components performing specialized and resource intensive tasks 
(Holub  et  al.  2011).  Configuration  of  many  independent  components  (computational 
resources with data acquiring or consuming application, network routers and links, etc.) is 
intractable for an end-user. Communication has to be established in real-time, and also needs 
to seamlessly adapt to changing network environment,  such as newly connected site or a 
failure of any component. Clearly the process has to be automated.

Decision of data distribution paths is a crucial part of the environment setup. Collaborative 
environments usually transmit several data streams concurrently, each of them from a single 
producer to several consumers. Bandwidth of the streams in the high-end environments is 
close to capacities of current network links (Holub et al. 2006). End-to-end latency is the 
crucial parameter for remote collaboration, hence needs to be minimized.

Transmission graph of each stream is a tree rooted at its producer with consumers at leafs. 
We  suppose  there  are  application-level  data  distributors  at  internal  nodes  of  the  tree. 
Although characteristic patterns of data transmissions might suggest the use of multicast, it is 
not suitable for needs of the collaborative environments. The multicast does not guarantee 
a protection from  network  congestion  when  several  independent  streams  are  distributed 
simultaneously.  There  are  also  concerns  for  its  performance  and  availability.  Several 
application-level  multicast  replacements  have  been  proposed,  be  it  standalone  packet 
reflectors (Hladká et al. 2004) or whole architectures like OMNI (Banerjee et al. 2003).

The CoUniverse (Liška and Holub 2009) has been a pioneering application in the field of 
multimedia applications orchestration. It has been deployed for setup of environments for 
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distributed classrooms and low-latency videoconferences, which both transmit high quality 
videostreams. The routing problem has been called Media Streams Planning Problem (MSPP) 
by its authors. It is understood as a tree placement (Holub et al. 2011) rather than common 
path placement (Simonis 2006), since there are new copies of stream packets created in the 
network.

The  MSPP  is  close  to  a  multicommodity  network  flows  problem  (Ahuja  et  al.  1993). 
Unfortunately,  solution  methods  for  the  network  flows  cannot  be  applied  to  the  MSPP 
without further modifications, because distributors create new copies of data. However, they 
cannot be considered sources in the network flow problem, since we do not know which of 
them will create new packets in advance.

Integer linear programming has been widely used for various network optimization problems, 
like minimizing makespan of large files transfers (Zerola et al. 2009), or power optimizations 
of broadcasting in wireless networks (Das et al.  2003). Authors of (Das et al. 2003) used 
network flow constraints and also MTZ formulations of cycle avoidance (Miller et al. 1960) 
similar to those presented in this paper for the MSPP.

Although multicast  is not a proper technology for purposes of the MSPP applications,  its 
routing  techniques  might  provide an inspiration  for  our  work.  Known methodologies  for 
many variants of the multicast routing problems were overviewed in (Oliveira and Pardalos 
2005). The OMNI architecture presented in (Banerjee et al.  2003) solves the problem for 
application-level  multicast  similar  to ours, yet  it  considers single multicast  tree only.  The 
MSPP is the most closely related to a multicast  packing problem (Chen et al.  2000). The 
multicast packing problem does not only consider placement of a single multicast tree, but 
handles  simultaneous  transmission  in  several  multicast  groups  over  a  single  underlying 
network. Optimal integer programming solution of the routing problem for multiple multicast 
groups  was  presented  in  (Noronha  and  Tobagi  1994).  Authors  propose  model  which 
combines binary variables for (stream, link) tuples with binary variables for (stream, link, 
consumer) triples. We have also tested this approach, yet did not include it in the paper due to 
space limitations and worse performance than the presented models.

Heuristics are mostly used to solve the multicast packing problem due to its high complexity. 
They are frequently based on Steiner trees (Wang et al. 2002), or genetic algorithms (Sanna 
Randaccio and Atzori 2007). Multicast packing has also been considered in form of multicast 
congestion problem (Lee and Cho 2004, Lu and Zhang 2005), where maximum congestion of 
network links is minimized instead of the latency.

Integer  programming  has  also  been  used  for  problem  of  Steiner  trees  packing,  where 
a maximal set of weighted Steiner trees should be placed to the network (Saad et al. 2008). 
Heuristic approaches to multicast packing might inspire our future work in further search for 
performance improvements.

The original implementation of the MSPP solver in the CoUniverse was based on constraint 
programming (Holub et al. 2011). Unfortunately, performance limitations allowed only for 
medium-sized  input  topologies.  This  paper  presents  and  evaluates  new  integer  linear 
programming  (ILP)  approaches  to  solve  the  MSPP,  which  aim to  improve  efficiency  in 
comparison  to  the  constraint  programming  (CP)  solver.  We  have  linearized  the  CP 
formulation into form of an integer linear program. Main contribution of this paper lies in 
proposal  and  performance  analysis  of  several  new approaches  to  avoidance  of  cycles  in 
transmission  graphs.  We have also employed  network flows formulation  to  the  problem. 
Similarly to the CP approach, we aim to construct solution within a short time period (i. e., 



few seconds). It allows fast replanning acceptable by end users and adaptation to changing 
network environment.

2. Elements of the Problem and Terminology

The MSPP is motivated by real-world user’s view of a network, which is the higher-level 
abstraction of physical topology. Actual physical topology is not generally known to users 
due to two main reasons: (1) the topology is subject of change, as network administrators 
might reconfigure it anytime, and (2) public exposure of the topology is considered to be 
a security  threat,  since  potential  attackers  would  know  weak  spots  of  the  network. 
Components of the problem are consequently motivated and also limited by the high-level 
view of the network.

The aim of media streams planning is to find routes for transmission of multimedia data, i. e., 
continuous  streams ( ).  Each  stream  requires  fixed  (i. e.,  not  changing  in  time) 
bandwidth  on the network. Streams are handled by three kinds of applications. Each 
stream is produced by a single producer ( ), received by a non-empty set of 
consumers ( ),  and  on  their  route  forwarded  by 
distributors ( ).  Distributors  may also  create  multiple  copies  of  the  stream packets, 
substituting multicast functionality on application level of the ISO/OSI. Each application can 
handle one stream at most.

Applications are running on a server or desktop computer. These computers make up a set of 
network  nodes ( ).  Lower  level  network elements  (like  switches  or  routers)  are  not 
included in the set  , as their number and placement are not known to the users. There are 
two restrictions  on  what  applications  are  allowed  to  run  at  a  same  node:  (1)  if  there  is 
a distributor running at a node, no other application is allowed to run there, and (2) several 
consumers  and/or  producers  may  run  at  a  single  node  as  long  as  they  handle  different 
streams. If an application   runs on the node  ,  we write  .  Nodes are 
organized into  sites,  which typically represent geographical  collocation of nodes, e. g.,  at 
a videoconferencing room. In a typical configuration,  there are several nodes at each site, 
each of them running a single application.

Several  network interfaces ( ) are configured on each node   (denoted by  ).  An 
interface has a limited transmission capacity . Each interface also belongs to exactly 
one of user-defined subnetworks. All interfaces within a subnetwork are considered mutually 
reachable in the underlying network.

The mutual  reachability  is  expressed by a  couple  of  directed  links between each  pair  of 
interfaces  within a  subnetwork.  Each link   has  latency  and transmission 
capacity . Since physical network links are not known to the users, it might occur that 
several of these links share one physical link, decreasing their actually available capacity. 
The CoUniverse periodically measures  link capacities.  If  it  is  insufficient  on some links, 
replanning from scratch is issued.

We  say  that  link   between  interfaces   connects  nodes   if  and  only  if 
. Source and target nodes of a link   are denoted as   and  , 

respectively. A set of all links connected to an interface  is called .

For an application  on a node , we define  as a set of links ending 
in  the  node ,  i. e., .  We  extend  this  notation  to  a  set  of 



applications  :  . We also define sets of 
outgoing links  and  analogously.

Before describing our solution approaches, we need to clearly explain what are capabilities 
and restrictions of distributors. They have two important  roles:  (1) forwarding the stream 
between nodes which are not directly connected by links, and (2) creating multiple copies of 
the stream to allow reception by multiple  consumers,  since producers always  create  only 
a single copy.  On the other hand,  split  streaming is  not allowed on distributors.  It  is  not 
allowed to transfer 1.5Gbit stream through two 1Gbit links, or use split streaming for load 
balancing. All packets from a producer to a single consumer have to be routed along a single 
path.  Split  streaming  could  lead  to  undesirable  packet  reorderings,  which  could  not  be 
handled by buffering without significant delay.

3. Core Constraints

In this section, we describe a set  of constraints, which are further used in all  subsequent 
methods. Individual methods (described in next sections) add various constraints upon this 
core constraints set. There are also differences in solution strategies, yet first step always is to 
post the core constraints in a backend solver.

This set of constraints is strongly based on the CP model presented in the previous work on 
the MSPP (Holub et al. 2011). However, some constraints in the CP model are not linear and 
had to be reformulated. This especially holds for constraints maintaining the tree shape of 
data distribution graph (see constraints (9) to (11)).

For each stream  and link  , there is a binary decision variable   called  streamlink. The 
streamlink  equals to 1 if and only if the stream  is transferred over the link . We also 
call streamlink active or inactive if it equals to 1 or 0, respectively.

Overall  transmission latency is  an optimization  criterion  in  the MSPP.  We formulate  the 
objective function as a sum of latencies of all active streamlinks.

(1)

There are three sets of constraints handling network capacity limitations. Total bandwidth of 
streams transferred over each interface  has to be lower than capacity of that interface (2). 
Similarly, total bandwidth of streams transferred over each link  cannot exceed capacity of 
the link (3). It is not allowed to transfer a stream  through a link  of insufficient capacity 
(4). This constraint is redundant (follows directly from (3)).

(2)

(3)

(4)

An application cannot send a stream  through arbitrary outgoing links. There has to be either 
consumer  of the stream   or a  distributor  on a target  node of the link (5).  Similarly,  an 
application  cannot  receive  a  stream   over  any  incoming  link.  There  has  to  be  either 



distributor or producer of the stream  on a source node of the link (6). The former constraint 
cuts off only suboptimal solutions. Target nodes of links deactivated by constraint (5) cannot 
receive any stream or forward it further, hence are not usable in any distribution tree. If there 
is a feasible solution with any of these streamlinks active, there still has to be a distribution 
tree which does not include any of them. Since their activation increases value of objective 
function, they would be deactivated in optimization process otherwise.

(5)

(6)

Each producer creates a single copy of the stream and sends it to another application. It is not 
capable  to create  multiple  copies  of the data,  hence each producer  sends its  stream over 
exactly one streamlink (7).

(7)

Each  consumer  handles  single  application  only  and  split  streaming  is  forbidden, thus 
consumers are not allowed to receive their stream by more than one link (8).

(8)

Since each distributor can handle only one stream, there may be at most one incoming link 
active (9). Distributor has to forward an incoming stream, i. e., the number of active outgoing 
links has to be at least the same as number of incoming links (10). This constraint cuts off 
only suboptimal solutions. We also need to forbid each distributor to send a stream it does not 
receive. It is clear that the maximum possible number of active streamlinks beginning in a 
distributor  equals to . Consequently, the constraint (11) is guaranteed to hold 
independently on the number of active outgoing links if a stream is received and forwarded.

(9)

(10)

(11)

4. Cycle Constraints

The core constraints presented in Sec. 3 do not avoid existence of cycles among distributors 
in feasible solutions. An example of possible cycle in a solution is depicted in Fig. 1. There is 
a consumer receiving the stream from a distributor in the cycle, but not any path from the 
producer to this consumer.  Such cycle  might occur among several  distributors,  which are 
close to each other (on low-latency links), yet distant from the producer (residing in another 
city, or continent). A cycle may therefore improve value of the objective function compared 
to solution where all consumers are connected to the producer properly. We proposed two 



alternative  strategies  of  cycles  handling:  immediate  avoidance  posts  all  cycle  avoidance 
constraints in the backend solver together with the core constraints, while delayed elimination 
posts only some of them just in case when cycles actually appear in solution implied by the 
core constraints.

4.1. Immediate Avoidance

Similarly  to  Holub  et  al.  (2011),  we  implemented  two  alternative  methods  of  cycle 
avoidance: one close to subtour formulation known from the travelling salesman problem, 
and the other related to the MTZ formulation (Miller et al. 1960). A basic solution strategy is 
to post  all  cycle  avoidance constraints  in backend solver at  once,  preventing cycles  from 
appearing. The subtour formulation sets upper bounds on the number of active streamlinks 
among distributor tuples. Each graph with   vertices and more than   edges contains 
certainly a cycle. If we force each -vertices subgraph of the graph to contain at most  
edges,  there  will  be  no  cycle  in  the  graph.  For  each  -tuple  ( )  of  mutually 
connected  distributors,  we  put  an  upper  bound   on  number  of  active  links  among 
them (12).

(12)

In the symmetric travelling salesman problem, it is sufficient to post the subtour avoidance 
constraints for  , since existence of a cycle among more than   vertices implies 
existence of a smaller cycle. Unfortunately, the assumption does not hold for the MSPP.

The MTZ exploits tree structure of data distribution. In a tree, each node has greater distance 
from the root than its parent. In other words, target node of each link has a greater distance 
than its source node. If there is a cycle in the graph, there also has to be an edge from a higher 
distance node to a lower distance one. The formulation adds a set of continuous decision 
variables   to the model. They denote distance of a node  from root in the transmission 
graph of  the stream  .  Their  bounds are  set  to .  The  following set  of 
constraints can hold only if the graph is a tree.

(13)

4.2. Delayed Elimination

In our preliminary performance evaluations, we have observed that the immediate avoidance 
constraints decrease performance of the solver significantly. In the subtour formulation, the 
number of constraints is very high. The MTZ formulation uses lower number of constraints, 

Figure  1 An example of possible cycle in solution. Black node is a producer, gray ones are distributors, and 
producers are the white ones.



yet the formulation is not as tight (Pataki 2003). The performance for the MSPP is similar for 
both  formulations.  Instead  of  avoiding  cycles  before  they  can  emerge,  we  proposed  to 
eliminate them by a simple separation algorithm only if they actually appear in the solution.

The core constraints are solved without any cycle avoidance constraints. Once the solution is 
found, cycles are detected in the distribution graphs per stream. We use the algorithm for 
enumeration  of  strongly  connected  components  instead  of  more  performance  demanding 
algorithm for cycles enumeration, since core constraints imply equivalence between strongly 
connected components and cycles.

All  cycles  found in  the  previous  step  have  to  be  eliminated.  However,  adding  all  cycle 
avoidance constraints and solving the model from scratch would require the same time as 
running whole model from Sec. 4.1. Instead, we fix the solution of non-cycled streams and 
eliminate cycles only in the affected ones. In the delayed subtour method, we enumerate all 
cycles and add single constraint for each of the cycles. However, we add all constraints for 
the relevant streams in the delayed MTZ method.

Once we apply the MTZ constraints on all cycled streams, they guarantee to imply solution 
without cycles. In contrast, adding particular subtour elimination constraints does not imply 
cycle-free solution. Naturally,  other cycles might appear after next run of the solver. If it 
happens, we repeat the procedure until an acyclic solution is found.

The performance is increased at the cost of potentially suboptimal solution. In extreme cases, 
a feasible solution might not be found even if it exists. In such case, we fall back to the model 
with cycle avoidance constraints to find out whether there actually is a feasible solution or 
not.

5. Flow Constraints

Current  mixed  integer  programming  solvers  perform  very  efficiently  on  problems  with 
network flow structure. Attempting to exploit this functionality, we proposed a set of network 
flow  constraints.  These  constraints  also  naturally  cope  with  cycles  and  no  other  cycle 
handling methods are needed.

However, Kirchhoff’s laws do not hold for the MSPP streams in distributor nodes. Therefore, 
we introduce the second set of integer variables called linkflows in the model: . For each 
stream   and link  ,  variable   equals  to  the  number  of  consumers,  which  receive  the 
stream  through  the  link  .  On  the  only  active  link  from  ,   equals  to 

,  which  is  also  an  upper  bound for  all   variables  handling  the  given 
stream . On all active links to consumers, the linkflows are equal to 1. Kirchhoff’s laws (and 
consequently network flow constraints) may hold for linkflows in contrast to streamlinks. We 
keep all  core constraints,  but do not apply either of above mentioned cycle  avoidance or 
elimination methods.

We set sums of the linkflows values for links adjacent to producers and consumers, similarly 
as for sources and sinks in network flows problem.

(14)

(15)



We also add flow conservation constraints at distributors.

(16)

And finally, the linkflows are tied with streamlinks.

(17)

(18)

6. Evaluation and Results

We implemented all solution methods described in Secs. 3–5 as an MSPP solving module in 
the CoUniverse. The module is written in the Java programming language as well as the 
whole CoUniverse. We used the Gurobi Optimizer version 4. 0. 1 as a backend mixed integer 
programming solver. To allow a comparison, we also measured performance of the constraint 
programming model  presented  in  (Holub et  al.  2011).  The CP model  was solved by the 
Choco library version 2.1.1 in our experiments. On the contrary, we do not present results of 
the MTZ-based immediate cycle avoidance method for sake of simplicity. They are generally 
not better then results of the subtour-based method.

6.1 Data Sets and Experimental Setup

We used three types  of input  data  sets  (further  called  topologies)  which simulate  typical 
patterns of multimedia transmissions in collaborative environments:

a) 1:n-s topologies:  one  site   transmits  a  stream  to  all  other  sites  through  a  single 
distributor. Each of the other sites transmits their stream back to .

b) 1:n-r topologies: they are similar to the previous type with an exception of higher number 
of distributors, there is one for each site except . Both 1:n topologies are typical cases 
for distant teaching and presenting.

c) m:n topologies:  each  site  transmits  a  stream to  all  other  sites.  There  is  at  least  one 
distributor for each site (exactly one for input sizes presented in this paper). 

Figure 2 Schemes of topologies used for measurements (taken from (Holub et al. 2011)): (a) 1:n-s, 5 sites (b) 1:n-
r, 5 sites (c) m:n, 4 sites



Schemes of all three types of topologies are depicted in Fig. 2. These topologies were taken 
from (Holub et al. 2011) to allow comparison with their results. Their paper also presents 
more detailed description of the topologies, which could not be written out in detail here due 
to space limitations.

Numbers of nodes and links in instances of the topologies (parameterized by the number of 
sites) are shown in Table 1. The number of links is presented after an elimination process 
(same  as  the  one  applied  in  (Holub  et  al.  2011)),  which  decreases  number  of  decision 
variables by removing unusable links.

Table 1: Parameters of selected topologies used for performance measurement

Topology 1:n-s-2 1:n-s-4 1:n-s-8 1:n-s-16 1:n-s-32
Nodes 5 11 23 47 95
Edges 6 28 120 496 2,016
Topology 1:n-r-2 1:n-r-4 1:n-r-8 1:n-r-12 1:n-r-16 1:n-r-20
Nodes 5 13 29 45 61 77
Edges 6 54 294 726 1350 2,166
Topology m:n-2 m:n-3 m:n-4 m:n-5 m:n-6 m:n-7
Nodes 6 12 20 30 42 56
Edges 6 45 112 225 396 637

All  measurements  were performed  on a  PC equipped with Intel  Xeon 5160 @ 3.0 GHz 
quadcore processor and 6GB RAM, running Linux with 2.6.22-17 kernel and Java SDK 1.6.0 
in a virtualized Xen environment. Options for java were set to -server -da -dsa. We 
ran 30 continuous runs of each measurement, and only the last 15 of them were taken into 
account. We did not limit the number of processor cores available for the Gurobi optimizer to 
allow improved efficiency for larger topologies.

6.2 Performance Measurements

We consider performance the main indicator  of quality of all  presented methods,  as they 
produce equivalent solutions (although delayed elimination methods are not guaranteed to 
solve the problem to optimality, they do so for our data sets). We measured time needed for 
each of them to solve several instances of each topology type. Size of the instances is given 
by the number of sites, as they generally correspond to the number of participants connected 
to a collaborative application. We are trying to find the biggest instance of each type which 
can be solved in real-time (i. e., within about 5 seconds). The graphs in Fig. 3 depict average 
times needed to solve the individual topologies.

Top left  chart  in  Fig.  3  shows that  all  presented  solution  methods  are  virtually  equal  in 
performance for the 1:n-s topologies. Performances of all ILP-based methods are very close 
to each other. The CP method performs slightly better for the largest presented topology. We 
identified  that  the  difference  lies  in  preparation  of  the  model,  i. e.,  performance  of  the 
backend solver API, which takes at least 95% of the required time. The model preparation 
procedure is slightly faster for the Choco library than the Gurobi solver.

Top right chart in Fig. 3 shows much greater performance differences among the methods in 
solution of the  1:n-r topologies. The CP method performs clearly the worst, solving just 6 
sites within 5 seconds. The core constraints with subtour-based cycle avoidance adhere with 
the time limit up to 11 sites. The three remaining methods reach the limit at 19–20 sites. Both 
delayed cycle elimination methods seem to perform very similarly. On larger topologies, they 
require slightly more time than the flow constraints, which exceed the 5 seconds limit by 



a few tens of milliseconds for 20 sites. The difference between flow constraints and delayed 
cycle  elimination  is  greater  than  average  time  needed  to  detect  and  possibly  eliminate 
the cycles.

When delayed cycle elimination methods are used, no cycles appear in solutions up to 12 
sites. From 13 sites to 18, the numbers of cycles in the solutions rises, while it decreases for 
19  and  20  sites.  Out  of  the  15  experimental  runs,  number  of  needed  additional  cycle 
elimination runs is depicted in Table 2.

Table 2 Overall numbers of additional solver runs required to eliminate cycles in 1:n-r topologies

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

Subtour 4 8 7 1
1

1
1

3
1

7 8

MTZ 1 3 5 7 1
2

1
2

1
1

7

Bottom left chart in Fig. 3 shows that all presented ILP-based methods outperform the CP 
model for the  m:n topologies. Five sites are the limit for the CP model (solved within 700 
ms), while the ILP-based methods manage to solve up to 7 sites within 250 ms. However, 
difficulty of the problem rises extremely with adding of the 8th site. One distributor per site is 
insufficient for 8 sites, since the distributor cannot manage more than six clients for highly-
demanding multimedia  applications,  e. g.,  uncompressed  HD-video transmissions.  Sudden 
increase of the distributors number from 7 to 16 causes also sudden increase in time required 
to solve the model.  It takes about 1 minute to solve the model with the flow constraints, 
which are the most effective ones.

Figure 3 Average computational time for the topologies. Top left: 1:n-s; top right: 1:n-r; bottom left: m:n.



Redundant  constraints. We have also evaluated influence of the redundant constraints  on 
performance  of  each  method.  We  divided  the  core  constraints  into  three  groups:  (1) 
redundant,  (2)  only  suboptimal  solutions  cutting,  and  (3)  the  others.  We  measured  the 
performance when (a) all of them were applied, (b) the redundant ones were not applied, and 
finally (c) only the last group was applied.

Unfortunately,  we cannot  include  full  results  and  evaluation  due  to  space  restrictions.  It 
generally seems advantageous to include all constraints which tighten the formulations, even 
if they only cut off the suboptimal solutions. Results without these constraints are worse than 
results with them for almost all topologies. However, effect of the redundant constraints is 
much less clear,  especially on both  1:n topologies.  They sometimes  slightly improve  the 
performance,  yet  there  are  topologies  where the results  are  marginally  better  without  the 
redundant constraints. Their effect also rises with higher number of possible solutions.

Although significance of the redundant constraints is questionable for the 1:n topologies, we 
keep them in the model for their clearly observable effect on the m:n topology. They improve 
performance of all by order of magnitude methods on these topologies with an exception of 
the flow method, where the effect is much more subtle.

7. Conclusions

We have introduced several ILP-based methods to solve the media streams planning problem. 
We suggested a set of core constraints partially based on the CP model published by the 
CoUniverse authors (Holub et al. 2011). The core constraints make a basis of all solution 
methods. These methods differ in the set of constraints added to the core constraints. Two 
well-known cycle avoidance methods were applied as well as in the CP model. We proposed 
to replace generally applied cycle avoidance constraints by elimination of only those cycles, 
which actually emerge in the solution. We also proposed solution method exploiting network 
flows formulation.

We have evaluated performance of all methods and compared it to performance of the CP 
model. There were three types of topologies used for the evaluation of the methods. For the 
simplest type, all methods perform similarly to the CP model. However, all proposed ILP-
based methods significantly outperform the CP model on the two more complex types of 
topologies. We consider this an evidence of their better suitability for more difficult instances 
of the problem. Out of the ILP-based methods, the one using network flow constraints has 
shown itself to perform the best.

In a near future, we plan to work on heuristic algorithms for solution of this version of the 
MSPP to allow further performance improvements of the solver. Further, we aim to solve 
more general versions of the problem. We plan to develop solvers capable of coping with 
partial knowledge of physical topology and availability of multicast in some subnetworks. 
We also plan to handle transcoding of multimedia streams in the network to influence their 
quality  by available  network  throughput.  We will  also  consider  more  complex  objective 
functions dealing with quality of service.
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