CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

Constraint Programming for Timetabling

Hana Rudová

Faculty of Informatics, Masaryk University Brno, Czech Republic

http://www.fi.muni.cz/~hanka

ASAP Seminar, 2004

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Purdue University Timetabling Problem

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

Course demands for individual students

- conflicts among classes of one student minimized
- Timetable for large lecture classes
 - Fall 2001
 - manually created: slightly smaller (750 classes), less constrained (about 40 assigned prior search)
 - Fall 2004
 - 830 classes = 1500 meetings
 - 50 classrooms
 - 89,633 course demands for 29,808 students
 - about 350 classes assigned before search
 - Spring 2005
 - easier data set

no freshmen consideration, about 780 classes

Outline

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

2 Constraint Satisfaction Problem

Over-Constrained ProblemSoft Constraints

- Ill-defined problem
 - Search
 - Inconsistencies

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary

• Constraint satisfaction problem (X, D, C)

- finite set of domain variables $X = \{V_1, \ldots, V_n\}$
- finite set of values (domain) $D = D_1 \cup \ldots \cup D_n$

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

- finite set of constraints $C = \{c_1, \ldots, c_m\}$
 - relations over subsets of variables

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

• Constraint satisfaction problem (X, D, C)

- finite set of domain variables $X = \{V_1, \dots, V_n\}$
- finite set of values (domain) $D = D_1 \cup \ldots \cup D_n$
- finite set of constraints $C = \{c_1, \ldots, c_m\}$
 - relations over subsets of variables
- Partial assignment of variables $(d_1, \ldots, d_k), k \leq n$
- Complete assignment of variables (*d*₁,...,*d*_n)
- Solution of CSP
 - complete assignment which satisfies all constraints

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

• Constraint satisfaction problem (X, D, C)

- finite set of domain variables $X = \{V_1, \dots, V_n\}$
- finite set of values (domain) $D = D_1 \cup \ldots \cup D_n$
- finite set of constraints $C = \{c_1, \ldots, c_m\}$
 - relations over subsets of variables
- Partial assignment of variables $(d_1, \ldots, d_k), k \leq n$
- Complete assignment of variables (d_1, \ldots, d_n)
- Solution of CSP
 - complete assignment which satisfies all constraints
- Constrain & Search

constraint propagation

CP for Timetabling

Hana Rudová

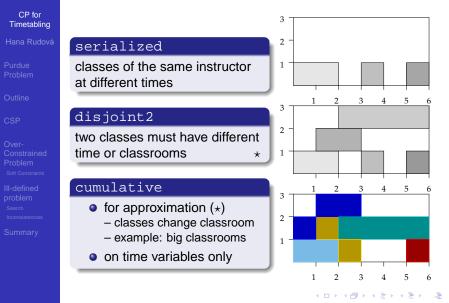
Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies


Summary

• Constraint satisfaction problem (*X*, *D*, *C*)

- finite set of domain variables $X = \{V_1, \dots, V_n\}$
- finite set of values (domain) $D = D_1 \cup \ldots \cup D_n$
- finite set of constraints $C = \{c_1, \ldots, c_m\}$
 - relations over subsets of variables
- Partial assignment of variables $(d_1, \ldots, d_k), k \leq n$
- Complete assignment of variables (d_1, \ldots, d_n)
- Solution of CSP
 - complete assignment which satisfies all constraints
- Constrain & Search
- Timetabling example
 - variables: time *T* and classroom *R* for each class
 - domains: possible starting times, possible classrooms
 - constraints: required classrooms, precedence relations among times

constraint propagation

Global Constraints

900

Over-Constrained Problems

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

Over-constrained problem

• there is no solution with all constraints satisfied

Solution:

constraint modeling by hard and soft constraints

• hard constraints = everything what must be satisfied

- soft constraints = optimization part
 - part of the problem which can be unsatisfied
 - optimization for preferential requirements
- Example of soft constraints
 - too many preferential time requirements
 - two classes share some students

Soft Constraints

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

Weighted constraints

- each constraint associated with the weight
- example: $V_1 \# \setminus = V_2 @$ weight
- aim: minimize weighted sum of unsatisfied constraints

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Soft Constraints

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

Weighted constraints

- each constraint associated with the weight
- example: $V_1 \# \setminus = V_2 @$ weight
- aim: minimize weighted sum of unsatisfied constraints

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Weighted constraints + hard constraints

- stronger propagation for hard constraints
- optimization for weighted constraints

Solver for Soft Constraints

CP for Timetabling

- Hana Rudová
- Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

- Each value of the variable associated with a weight
 - unary soft constraints
- Soft constraint propagation
 - unsatisfied *c* @ *weight* increases weights of values for variables in *c*
- Evaluation of the solution $[V_1 = v_1, \ldots, V_n = v_n]$:

$$\sum_{\forall i} w[V_i, v_i]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

• Aim: minimize evaluation of the solution

Solver for Soft Constraints

CP for Timetabling

- Hana Rudová
- Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

- Each value of the variable associated with a weight
 - unary soft constraints
- Soft constraint propagation
 - unsatisfied *c* @ *weight* increases weights of values for variables in *c*
- Evaluation of the solution $[V_1 = v_1, \dots, V_n = v_n]$:

$$\sum_{\forall i} w[V_i, v_i]$$

- Aim: minimize evaluation of the solution
- Example: $V_1 # \setminus = V_2@$ weight
 - V_1 or V_2 is instantiated to value v
 - ⇒ weight of the value v for second variable V_i increased by weight $w[V_i, v] + weight$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

• partial forward checking

Examples of Soft Constraints

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary

• Unary soft constraint

- times or locations are preferred or discouraged
- Soft serialized constraint
 - class A should not overlap with B
 - weight is the number of students in common

• Soft cumulative constraint

At most N classes of some department are taught at the same time

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

N is a soft limit

Ill-defined problems

CP for Timetabling

- Hana Rudová
- Purdue Problem
- Outline
- CSP
- Over-Constrained Problem Soft Constraints

Ill-defined problem

- Search Inconsistencie
- Summary

• Ill-defined problem

- mistakes in the problem definition
- Mistake = contradiction of hard constraints
- Example
 - constraint propagation ⇒ two teachers require the same classroom at the same time

Ill-defined problems

CP for Timetabling

- Hana Rudová
- Purdue Problem
- Outline
- CSP
- Over-Constrained Problem Soft Constraints
- Ill-defined problem
- Search Inconsistencies
- Summary

• Ill-defined problem

- mistakes in the problem definition
- Mistake = contradiction of hard constraints
- Example
 - constraint propagation ⇒ two teachers require the same classroom at the same time

- Mistakes must be removed from the problem definition to find a solution
- Solution: detection of mistakes
 - during search
 - during posting hard constraints

Tree Search

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary

Complete search

• Depth First Search

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Tree Search

CP for Timetabling

Hana Rudová

Purdue Problem

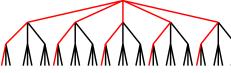
Outline

CSF

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary


Complete search

• Depth First Search

Incomplete search: cutoff strategy

• constrain some of the available resources

• Depth Bounded Search

DBS(1)

・ロット (雪) (日) (日) (日)

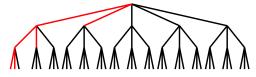
Limited Assignment Number Search

CP for Timetabling

Hana Rudová

Purdue Problem

Outline


CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

LAN(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

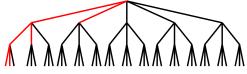
Limited Assignment Number Search

CP for Timetabling

Hana Rudová

Purdue Problem

Outline


CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

• LAN(2)

- Constraint propagation
 - values incompatible with the current partial assignment are removed from the domains
- LAN(3) + constraint propagation

do not waste time on "hard" variables

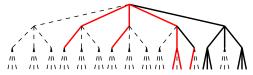
• explore various parts of the search tree

Maximal Consistent Assignment

Hana Rudová

Purdue Problem

Outline


CSP

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary

Unassigned variables

- second variable V₂ unassigned
- some constraint(s) on V₂ remain(s) unsatisfied

▲□▶▲□▶▲□▶▲□▶ □ のQ@

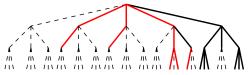
Maximal Consistent Assignment

CP for Timetabling

Hana Rudová

Purdue Problem

Outline


CSP

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary

Unassigned variables

- second variable V₂ unassigned
- some constraint(s) on V₂ remain(s) unsatisfied
- Consistent assignment
 - satisfy (at least) all constraints over assigned variables

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- Maximal consistent assignment
 - consistent assignment of the largest cardinality
- Locally maximal consistent assignment
 - assignment which can not be extended to non-instantiated variable

Restart for LAN Search

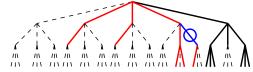
CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP


Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

restart algorithm with different setting

- unassigned variables first
- untried values for unassigned values first
- successful values for assigned variables

Restart for LAN Search

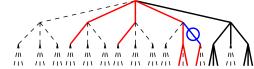
CP for Timetabling

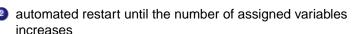
Hana Rudová

Purdue Problem

Outline

CSP


Over-Constrained Problem Soft Constraints


Ill-defined problem Search Inconsistencies

Summary

restart algorithm with different setting

- unassigned variables first
- untried values for unassigned values first
- successful values for assigned variables

- Idetection of possible problems over unassigned variables
 - + hard to solve parts, weak propagation
- continue with restart with the problem changes
 - problem redefinition does not introduce any changes in restart strategy

How to Discover Inconsistencies?

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary

Undesirable inconsistencies

- Mistakes in data input
 - minimize by user interface
 - types of mistakes
 - introduced during data entry
 - naturally included as a part of the problem

How to Discover Inconsistencies?

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

- Undesirable inconsistencies
- Mistakes in data input
 - minimize by user interface
 - types of mistakes
 - introduced during data entry
 - naturally included as a part of the problem
- Explanations
 - computationally expensive
 - not available in standalone constraint solvers

- During search
 - LAN search
 - user need some partial solution
 - user can change the problem
- Before search
 - manual process
 - automated process

Preconditions for Detection of Inconsistencies

CP for Timetabling

- Hana Rudová
- Purdue Problem
- Outline
- CSP
- Over-Constrained Problem Soft Constraints
- III-defined problem Search Inconsistencies
- Summary

- Detail (print) information about
 - posting each constraints
 - each value removal
- Post constraints in specific order
 - most complex first, most simple last
- Complex constraints
 - disjoint2, cumulative
 - detection of a conflict here is not easy
- Simple constraints
 - constraints over small set of variables
 - unary constraints over location or time

Towards Automated Process of Detection

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

III-defined problem Search Inconsistencies

Summary

- Fail during constraint posting
- Last posted constraint c_{LAST} failed
- Variables in c_{LAST} are problem variables
- Tracking of value removals for problem variables
- Value removal was due to constraint c_{REMOVE}
- Oneck consistency of c_{LAST} and c_{REMOVE}

In our problem, conflict between c_{LAST} and c_{REMOVE} was always source of a mistake.

Conclusion

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

Over-constrained, ill-defined problems

- solver for weighted soft constraints
- locally maximal consistent assignment during search
- detection of mistakes for standalone constraint solvers

Conclusion

CP for Timetabling

Hana Rudová

Purdue Problem

Outline

CSP

Over-Constrained Problem Soft Constraints

Ill-defined problem Search Inconsistencies

Summary

Over-constrained, ill-defined problems

- solver for weighted soft constraints
- locally maximal consistent assignment during search
- detection of mistakes for standalone constraint solvers

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Optimization

- multi-criteria optimization
- minimal perturbation problem