
MASARYK UNIVERSITY BRNO

FACULTY OF INFORMATICS

} w��������
��
Æ������������ !"#$%&'()+,-./012345<yA|

Constraint Satisfaction with Preferences

Ph.D. Thesis

Brno, January 2001 Hana Rudová



ii



Acknowledgements
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Chapter 1

Introduction

First works on constraint satisfaction problems (CSPs) can be traced in the 70’th [Mon74,
Mac77, Fre78], but their widespread study and application started since the end of 80’th
when the extension of unification algorithm of logic programming [O’K90, MW88, GHR93]
led to the proposal of constraint logic programming (CLP) scheme [JL87, VH89]. CSP and
CLP allow to express properties of the problem declaratively by means of constraints and
to search for its solution via specialized algorithms. The most studied problem instances
range over variables with finite domains which probably belong to more than 95 % of all
industrial applications of constraints [Sim99, Bar99a]. Constraint programming is applied
to solve wide range of problems, among them scheduling, configuration, hardware verifica-
tion, graphical interfaces, or molecular biology [Sim99, AS99, Wal92, MCF98, FB98, KB99].

In most real-life situations we need to express fuzziness, possibilities, probabilities, costs,
weights, . . . In general, human specifications are difficult to express faithfully via hard con-
straints only. While problems may become over-constrained it does not make sense to say
there is no solution. Many problems require finding of best or optimal solution wrt. one or
even more optimization criteria. Others may be ill-defined and we need to include uncer-
tainty of the problem definition into final solution. All these problems need to apply some
type of preferences which have to be included into both declarative and control part of the
solution. That led us to the study of CSPs with preferences from both theoretical and practical
points of view within this thesis.

1.1 Thesis Outline

Chapter 2 is aimed to give an overview of CSP and CLP paradigms as a background for
understanding both theoretical and practical parts of thesis. All theoretically oriented Chap-
ters 3–5 follow the same structure we have proposed to give a unifying view to particular
approaches for solving CSPs with preferences. That way, notions of constraint, problem,
satisfaction degree, solution, and consistency degree create a basic outline of all presented
frameworks. Both existing and proposed approaches are applied in the practical part of
thesis represented by solution of timetabling problem in Chapter 6.

Chapter 3 summarizes existing approaches for solving CSPs with preferences. Start-
ing from the basic frameworks over particular types of preferences (weighted, probabilistic,
possibilistic, fuzzy CSPs) we continue through meta-frameworks (partial, valued, semiring-
based CSPs — SCSPs). Basic frameworks may be obtained by specification of a general alge-
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2 CHAPTER 1. INTRODUCTION

braic structure of meta-framework. In Sect. 3.7.4, we have proposed new relations of equiv-
alence and refinement for SCSPs to be able compare its instances with partial ordering of
preferences.

Theory of constraint hierarchies (CHs) is studied in Chapter 4. After basic description
of the framework with its comparators for selection of solution, we continue with proposal
of new ordered-better and lexicographic-better comparators and their comparison with tra-
ditional comparators of CHs in Sect. 4.3. Section 4.4 proposes an algorithm for solving CH
with ordered-better comparator. As a main contribution of this chapter, we define instances
of algebraic structure of SCSP for certain comparators of CHs (see Sect. 4.5) and classify them
into complexity classes with help of proposed equivalence for SCSPs (details in Sect. 4.6). We
also show that for remaining comparators any correspondence with SCSP does not exist.

An original contribution of the thesis concerns an idea of assigning preferences to par-
ticular variables in constraint. That led us to study of constraints with the so called vari-
ables’ annotations in Chapter 5. Solutions of constraint system with variables’ annotations is
defined via fuzzy and hierarchical annotations inspired by existing frameworks fuzzy CSP
and CHs. Annotations are also applied to compute variable orderings in CSPs with prefer-
ences.

Practical application of discussed approaches for CSPs with preferences is described for
timetabling problem in Chapter 6. After description of course timetabling problem and
current constraint-based approaches for its solution, we study and propose strategies for
solving classroom allocation problem in Sect. 6.3. Section 6.4 is devoted to construction of
student-oriented schedules representing problem which still was not solved via CP method-
ology. Correspondence of problem with weighted and fuzzy CSPs is also presented. Possible
application of variables’ annotations for timetabling problems is discussed in Sect. 6.5. Pro-
posed methods are applied for solving Faculty of Informatics timetabling problem including
construction of individual student schedules for more than 1 000 students. Achieved results
are compared with other solution methods and comparable problem instances in last section.

Chapter 7 concludes the thesis discussing possible directions for future research, present-
ing main contributions of the thesis, and giving summary of the thesis.



Chapter 2

Constraint Satisfaction

This chapter will give a basic overview of constraint satisfaction approach emphasizing
those topics we will later concentrate on within the thesis. For further details, we refer
to resent book of Marriott & Stuckey [MS98] or Van Henteryck’s book [VH89]. Surveys
or tutorials on constraint satisfaction my be also found in papers [Rut98, BM95, Kum92,
Bar99b, Pug98a] or on web page [Bar98]. For references on constraint logic programming
see [JM94, F+93, Mat93].

2.1 Constraint Satisfaction Problem

A constraint satisfaction problem prescribes some requirements for a finite number of vari-
ables in the form of constraints. The set of possible values — the domains — for each variable
is finite. A constraint tells which value tuples are allowed for a certain subset of all the vari-
ables. A constraint can be given either explicitly, by enumerating the tuples allowed, or
implicitly, e.g., by an algebraic expression.

Definition 2.1 (constraint, problem) A constraint satisfaction problem (CSP) is a triple P =
(V,D,C), where

• V = {v1, . . . , vn} is the set of variables called domain variables;

• D = {D1, . . . ,Dn} is the set of domains. Each domain is a finite set containing the
possible values for the corresponding variable;

• C = {c1, . . . , cn} is the set of constraints. A constraint ci is a relation defined on a subset
{vi1 , . . . , viki

} of all the variables, that is {Di1 × · · · ×Diki
} ⊇ ci.

Set of variables in constraint c will be denoted by Vc. If the set Vc has only one or two el-
ements, we speak about unary or binary constraints, resp. Remaining constraints are called
non-binary. A CSP is a binary CSP, if all its constraints are unary or binary. Binary CSPs play
a special role, as any CSP can be transformed into an equivalent binary CSP by the so called
constraint binarization. In practice, nevertheless, this transformation sometimes introduces
too many additional variables with large domains which may considerably complicate solu-
tion of a new problem.

The structure of CSP may be represented by a constraint graph, the most simple constraint
graph handles binary CSP — vertices correspond to the variables which are connected by
an edge iff there is a constraint referring to both variables.

3



4 CHAPTER 2. CONSTRAINT SATISFACTION

Definition 2.2 Assignment is a mapping θ from set of domain variables Y ⊆ V to their cor-
responding domains, i.e., θ(vi) ∈ Di for vi ∈ Y . Set of all assignments on Y will be denoted
by ΘY .

Let us take variables in Y in any fixed order (v1, . . . , vm). Assignment θ corresponding to
{(v1, dv1), . . . , (vm, dvm)} will be written by θ = (dv1 , . . . , dvm). Sometimes is spoken about
(value) tuple (dv1 , . . . , dvm).

An assignment defined on the set of domain variables V is complete, otherwise it is called
partial. The set of all possible complete assignments ΘV ≡ D1 × · · · × Dn is called solution
space, in the sense that the solution should be searched within this space.

Definition 2.3 Constraint c is satisfied in assignment θ (noted θ � c) if all its variables got a
value such that corresponding value tuple belongs to c. Dually constraint is called unsatisfied.

For any given constraint ci(vi1 , . . . , vim), we will note ¬ci(vi1 , . . . , vim) which is unsatisfied
when ci is satisfied.

Definition 2.4 (solution) A partial assignment θ is consistent if all the constraints referring
only to variables assigned by θ are satisfied.

Solution of CSP (V,D,C) is a consistent complete assignment, i.e., all constraints in the
set C have to be satisfied.

If a CSP does not have any solution, the problem is called over-constrained or inconsistent and
a CSP with more than one solution is called under-constrained. A constraint is relaxed if there
are further element(s) added to the relation. If elements are removed from the relation, then
the constraint is tightened.

2.2 Optimization Problem

Within the search for solution we may decide for different kinds of exploration of the solution
space. We may search for one solutions, all solution, or often for some best solution wrt.
given criteria. Such solution is searched within the so called optimization problem (or more
precisely constraint satisfaction optimization problem).

Definition 2.5 Objective function F is a function defined from variables V to an ordered
set W . Minimal values of W wrt. ordering ≤W are expected to be more preferred.

An optimization problem is a CSP with an objective function F .
Considering an optimization problem, an assignment θ is preferred to the assignment δ, if

the value of the objective function under θ is less than the value under δ, i.e., Fθ < Fδ.
An optimal solution is such a solution θ that none preferred solution to θ exists.

Often objective function is an expression which evaluates to a real number and whose value
should be minimized. Maximization problem is easily transformed into an equivalent min-
imization problem by simply negating the value of objective function F . However, our
general definition also includes multiple criteria optimization problem. In such problem,
ordering of possibly multi-dimensional set W should be carefully defined.

Definition of a feasible solution allows us to consider still interesting sub-optimal solu-
tions. Such solutions may have the value of objective function constrained by some threshold
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value. Selection of appropriate threshold value then becomes critical part during a search for
such sub-optimal solutions.

Sometimes particular requirements (constraints) may be even contradictory which com-
plicates selection of any solution. After relaxing some constraints in the over-constrained
problem, it can be transformed into an optimization problem where the objective function
may express understanding of the “best” possible solution.

2.3 Solution Methods

The basic search algorithm which variations are often applied to find a solution of CSP is
a backtracking. Basically it assigns values to particular variables extending a partial assign-
ment step by step. Each time a value is instantiated, satisfaction of constraint with already
assigned variables is tested. If some of the constraints is violated other of remaining values
are considered. Different heuristics define more or less intelligent backtracking strategies to
recover from dead ends.

Other basic methods are the so called consistency (or constraint propagation) techniques
eliminating those values from domains of variables which are inconsistent with any con-
straint. Starting from node-consistency for unary constraints through arc-consistency consid-
ering binary constraints, we may continue up to k-consistency which removes inconsistent
values for any system of k variables. Unfortunately pure k-consistency leads to an ineffi-
cient search of overall solution space.

The most common way of solving CSPs combines both techniques. Consistency tech-
niques are interwoven with steps of basic search algorithm to boots its performance. The so
called lookahead algorithms accept a value for some variable after having look ahead whether
its assignment would not lead to a dead-end.

For all algorithms based on tree-search, it becomes critical which variables and values are
assigned first to avoid deep backtracking. It means that a big part of the variable assignments
have to be undone, often repeatedly many times (the so called trashing). The reason for this is
that the variable, which can not be instantiated properly for a big set of partial assignments,
is dealt with too late. Variable ordering heuristics are used to judge which variables are the
most critical to instantiate them first. They may be based on the number of possible values in
current domain of variables and on already satisfied and remaining constraints. An example
is a first fail strategy assigning first variables with the least possible values. Variable order-
ing may be computed a priori before any search in the solution space starts. Such variable
ordering is called static. More often the so called dynamic variable ordering is applied (e.g.,
first fail strategy). Such variable ordering selects variable for instantiation during search of
solution space each time when some variable should be instantiated. Value ordering heuris-
tics decide order of assigning values to a variable. Generally one should take a value which
will not have to be reconsidered later on, due to backtracking. Hence, the most promising
values should be tried first, i.e., those extending partial assignments to a solution.

Besides tree-search algorithms, structure-driven or local algorithms may be applied. The
structure-driven algorithms exploits graph structure of the problem, common methods in-
cludes its decomposition. Hill climbing or genetic algorithms belong to a class of local meth-
ods stepping from one complete instantiation to another one.

Optimization problems are often solved by the so called branch-and-bound algorithm. It
needs a heuristic function that associates each partial assignment with some value estimat-
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ing its quality. The algorithm behaves like backtracking except that as soon as a value is
assigned to the variable, the value of heuristic function for the assignment is computed (e.g.,
current partially evaluated value of objective function). If this value exceeds the bound (e.g.,
currently best computed value of objective function), then the sub-tree under the current
partial assignment is pruned to avoid its useless exploration.

2.4 Constraint Programming

The most natural programming paradigm for combining constraints represents logic pro-
gramming [O’K90, MW88, GHR93]. Logic programming provides an elegant way allowing
to separate the logic/declarative and control/search parts of a program. Its best known rep-
resentative is the logic programming language Prolog (e.g., SICStus Prolog [COC97, Int00],
ECLiPSe [WNS97], CHIP [AB91]). A constraint logic programming (CLP) extends standard uni-
fication of logic programming by constraint satisfaction having equality as only one of the
constraints. However, logic programming is not an essential basis for CLP as this paradigm
was inherited by other languages like C++ library ILOG [Pap94, Pug94] or concurrent object-
oriented language Oz [Smo95].

The basic structure of constraint logic programs for solving constraint satisfaction prob-
lems remains always the same. The first part consists in definition of all the problem vari-
ables with their domains. The domains of variables are reduced by constraints which are
stated in the next step. The method defining search of solution space is included via la-
belling (or enumeration) — the process of generating values of particular domain variables.
Described structure may be rewritten into the following CLP code.

solve(Variables) :-
define_variables(Variables),
state_constraints(Variables),
labelling(Variables).

Tree search can be easily expressed via the following code where variable and value ordering
heuristics are processed before a value assignment evoking the constraint propagation.

labelling(Variables) :-
select_variable(Variables, Variable, Rest),
select_value(Variable, Value),
Variable #= Value,
labelling(Rest).

Often # symbol is used to distinguish operators of logic programming and constraint logic
programming.

Labelling procedure may be also intended to find a solution of optimization problem
with some objective function F, i.e.,

state_constraints(Variables,F), labelling([minimize(F)], Variables)

where objective function F over variables in Variables is defined in the first step and its
value is minimized by the second step.
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2.4.1 Global Constraints

Constraint binarization may lead to a large increase of solution space such that solution may
not be even found in any reasonable time. To avoid this drawback, special constraint propa-
gation algorithms were proposed to solve distinguished sub-problems defined on some sub-
set of variables by the so called global constraints. Modelling of problem via suitable global
constraints belongs to critical decisions of constraint programming greatly influencing com-
putational efficiency.

Let us introduce global constraints in detail as they are extensively applied within last
chapter on timetabling. The description will start from basic global constraints with almost
“trivial” propagation and conclude with more special constraints applied for scheduling.

The element(N, List, Value) constraint specifies that the N-th element of the List
must have the Value . Elements of list List , Value , and N are either domain variables or
integers.

The constraint count(Value, List, RelationalOperator, Count) is true if Nis
the number of elements of the List that are equal to Value (only integer) and the statement
N RelationalOperator Count holds for some of

RelationalOperator -> { #= | #\= | #< | #=< | #> | #>= }.

This definition generalizes a family of simpler constraints

exactly/atmost/atleast(Value, List, Count)

which state that exactly/at most/at least Count variables of the List have the Value , resp.
Compared with count constraint, the meaning of the parameters Value , List , and Count
remains the same and value RelationalOperator defines its semantics. Combinatorial
constraints exactly , atmost , and atleast correspond to #=, #=< , and #>= , respectively.

The family of among constraints was introduced in CHIP for solving sequencing prob-
lems especially. Let us describe one of the variants of this constraint which helps us to solve
timetabling problems.

among([Low, Up], [X1,...,Xs], [C1,...,Cs], [V1,...,Vm])

constraint has integer parameters Low and Up, list of domain variables [X1,...,Xs] , and
lists of integers [C1,...,Cs] and [V1,...,Vm] with increasing values in [V1,...,Vm] .
The among constraint is true if the following condition holds: at least Low and at most Up
terms among X1+C1, . . . , Xs+Cs take their value in the list of values [V1,...,Vm] .

The among constraint is another extension of above mentioned atmost , atleast , and
exactly constraints.

atmost(Value,List,Count) ≡ among([0,Count],List,Zeros,[Value])
atleast(Value,List,Count) ≡ among([Count,0],List,Zeros,[Value])
exactly(Value,List,Count) ≡ among([Count,Count],List,Zeros,[Value])

The constraint alldifferent(List) (or alldistinct ) [Rég94, Pug98b] states that
a set of variables in List must have pairwise distinct n values. While a naive implementa-
tion has running time complexity O(2n), a graph theoretic approach [Rég94] leads to the re-
sulting complexity O(n2d2) with d = card(D). The recent implementation by Puget [Pug98b]
based on bound consistency algorithm even achieves complexity O(n log n).
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The alldifferent constraint may be also understood as a requirement on schedul-
ing of different tasks (activities) of unit length while all of them need one exclusive resource
(the so called unary resource). The disjunctive (or serialized ) constraint extends ap-
plicability of alldifferent towards the tasks of variable duration. Generally such con-
straints belongs to a class of disjunctive scheduling problems [CL94, BLP95, Bap98, Nui94,
BLP96, PB98] constraining it such a way that it does not allow interruption of particular
tasks (non-preemptive case). Tasks are specified by a start time StartJ and a duration Du-
rationJ .

disjunctive([Start1,...,StartN], [Duration1,...,DurationN]) ,

where each StartJ and DurationJ are domain variables with finite bounds or integers.
Cumulative scheduling [CL96b, NA96, Bap98, Nui94, BLP96, PB98] constraint has been

introduced in CHIP in order to solve scheduling and placement problems [AB93]. It ensures
that a resource can run several tasks in parallel, provided that the discrete resource capacity
is not exceeded. If there are N tasks, each starting at a certain start time (StartI ), having
a certain duration (DurationI ) and consuming a certain amount of resource (ResourceI ),
then the sum of resource usage of all the tasks must not exceed ResourceLimit at any
time. The constraint syntax follows

cumulative([Start1,...,StartN], [Duration1,...,DurationN],
[Resource1,...,ResourceN], ResourceLimit) ,

where elements of all list together with ResourceLimit are domain variables with finite
bounds or integers.

Let us consider major uses of cumulative constraint [AB93] in Fig. 2.1. The first ex-
ample in Fig. 2.1(a) demonstrates full capabilities of cumulative constraint and while the
example in Fig. 2.1(d) simplifies cumulative constraint to the disjunctive scheduling prob-
lem with the same application as the disjunctive constraint above. Figures 2.1(b) and
2.1(c) present typical application of cumulative constraint in timetabling problems. Their
special instance may be semantically represented by a set of atmost constraints. It corre-
sponds to tasks of unit durations and unit resource capacities (see Fig. 2.1(e)) for which we
obtain the following equivalence

cumulative(Starts,ListOf1,ListOf1,ResourceLimit) ≡
{atmost(TimeSlice,Starts,ResourceLimit)| ∀TimeSlice} .

Let us note that all above global constraints express a condition which has to be neces-
sary satisfied. Global constraints which would be able to take into account possibly over-
constrained problem definition were efficiently implemented for highly specialized sub-
problems [BLPP98, Rég99] only.
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(a) cumulative ([0,1,3],[4,2,3],[1,2,2],3)
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(b) cumulative ([0,1,2],[3,3,4],[1,1,1],3)
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(c) cumulative ([0,1,1],[1,1,1],[2,1,2],3)
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(d) cumulative ([0,3,5],[2,1,1],[1,1,1],1)
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(e) cumulative ([0,1,1],[1,1,1],[1,1,1],3)

Figure 2.1: Major uses of cumulative constraint
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Chapter 3

Frameworks

Each section of this chapter tries to give a uniform view to particular approaches for solving
constraint satisfaction problems with preferences. Definitions of following terms1 are crucial
for understanding of each framework

– constraint, problem, satisfaction degree, solution, consistency degree.

Constraint defines some extension of classical constraint from Def. 2.1. Definition of problem
naturally extends the notion of CSP wrt. the constraint definition. Satisfaction degree evalu-
ates how every assignment satisfies constraints in the problem, i.e., it is aimed to compare
particular assignments. The main idea behind definitions of solution slightly differs for par-
ticular frameworks. Some of them express a solution as a sufficient assignment while most
of them require its optimality. Unifying view to different definitions introduces a consis-
tency degree evaluating to which extent optimal assignments satisfy initial conditions. Meta-
frameworks which are able to handle basic frameworks will also elucidate the notion of
a structure. Its specification defines particular frameworks as classes (or instances) of meta-
framework.

3.1 Weighted Constraint Satisfaction

Weighted, penalty, cost-based, or optimization constraint solving refers to the same ap-
proach firstly considered in [SH81]. The most general idea behind this framework consists
in minimization of weights (costs, penalties) for tuples of values in all constraints. Different
definitions consider weights of constraints with the aim to minimize them for unsatisfied
constraints. The most studied instance of weighted CSP, the so called MAX-CSP (or maximal
CSP) is specialized to satisfaction of maximal number of constraints [FW92].

Our description will introduce weight for each constraint — possible transformation of
this approach to preferences of particular tuples is discussed in Sect. 3.8.1.

Definition 3.1 (constraint, problem) A weighted constraint is a pair (c, w(c)) with c as a clas-
sical constraint defined by Def. 2.1 and w(c) ∈ W giving the weight of constraint c as an el-
ement of totally ordered set W . W is ordered by an ordering ≤W such that smaller weights
represent weights of less important constraints.

1Particular names are inspired by terminology taken from [DFP94] introducing fuzzy constraint satisfaction.

11
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Weighted constraint satisfaction problem Pω consists from a set of weighted constraints C
restricting possible values of variables from the set V each ranging on a domain D.

The weight of constraint is usually natural number. Already mentioned MAX-CSP may be
introduced by constraining the cardinality of the set of all weights W to one.

Definition of assignment together with satisfied and unsatisfied constraint may be taken
from the section about constraint satisfaction (see Definitions 2.2 and 2.3).

Definition 3.2 (satisfaction degree) Let us consider weighted CSP Pω = (V,D,C). A satis-
faction degree ω of assignment θ ∈ ΘV is given by the sum of weights of all constraints which
are unsatisfied by assignment θ, i.e.,

∀θ ∈ ΘV : ω(θ) =
∑
θ�¬c

w(c) .

Definition 3.3 (solution, consistency degree) A solution of weighted CSP Pω is such assign-
ments θ that its satisfaction degree ω(θ) is minimal wrt. ≤W .

Satisfaction degree of solution gives us consistency degree of weighted CSP.

Example 3.1 Let us consider a trivial example from temporal scheduling. We have to sched-
ule three events into three different time periods. The first one should be scheduled before
the second one with weight 10. The third event should be placed right after the first one with
smaller weight equal to 5. And if it would be possible we would like to schedule all events
in subsequent order, i.e., the first event as the first one with weight 2, the second as a second
one with weight 2 and the last event as a last one with the weight 2 too.

The first requirement with the most important weight would require scheduling of first
event into the first or second time period while the second event has to be scheduled within
the second or third time period. This decision ensures that the first constraint will be satisfied
and its weight will not be subsumed into weight of solution. The second constraint requires
placement of the third event between the first and second event. This would result into
assignment of times in order first, third, and second event. Such assignment satisfies the first
and second requirement together with constraint on first event. However, we have switched
the second and third events and violated two constraints each having weight 2. This would
result into assignment having weight 4. Any other assignment has to violate either first
or second requirement which would result into worse satisfaction degree of assignment (at
least equal to 5), i.e., we have obtained solution with consistency degree 4.

3.2 Probabilistic Constraint Satisfaction

While the preferences in previous approach express necessity of satisfaction of given con-
straint in form of its weight, probabilistic approach [FL93] is aimed to consider an ambigu-
ity about the relevance of some constraint to the real (in the sense of real-world) problem.
As an example we may consider a robot moving in an ill-known environment, which knows
that there could be an obstacle at point (x, y). A preference attached to the constraint then
expresses probability degree on its relevance to the ill-known real problem.

This section expects basic knowledge on probabilistic reasoning, for references see intro-
ductory books about probability theory [Š87, LM82].
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3.2.1 Problem Definition

Definition 3.4 (constraint, problem) The probabilistic constraint satisfaction problem Ppr con-
sists from a set of variables V , their domains D, and a set of probability constraints Cpr =
{(c1, p1), . . . , (cm, pm)} where C =

⋃
i ci is a set of classical constraints and pi is the probabil-

ity that the constraint ci is a constraint of the real CSP P = (C, V,D) having C ⊆ C , i.e.,

Pr(ci ∈ C) = pi Pr(ci 6∈ C) = 1− pi .

It is assumed that each pi is greater than 0 (constraints being certainly not relevant are not sig-
nificant at all) and that the relevance of two different constraints are two independent events.
Such constraints should be relaxed independently of the others, i.e., the probability that both
ci and cj belong to C is

Pr
(
(ci ∈ C) ∧ (cj ∈ C)

)
= Pr(ci ∈ C)× Pr(cj ∈ C) = pi × pj .

Probabilistic constraint satisfaction is aimed to find real constraint satisfaction problem P
together with assignment(s) which may be acceptable to this problem. It should be men-
tioned that we couldn’t search directly for solution of CSP P because there is no guarantee
for consistency of problem P.

3.2.2 Problems’ Lattice

Let us consider probabilistic CSP Ppr = (V,D,Cpr) with Cpr = {(c1, p1), . . . , (cm, pm)} and
denote P = (V,D,C) having C = {c1, . . . , cm}. The set of possible constraints C defines
a lattice of possible classical CSPs, namely 2P , in which only one problem is the real one P.
Having defined this lattice, the notion of sub-problem and super-problem follows from relations
inside it. For an example of problem’s lattice, you may see Fig. 3.1 in Example 3.2.

Definition 3.5 Probability distribution pr on 2P is defined as follows: Pj ∈ 2P is the real CSP
iff each constraint of Pj is relevant and all other constraints are not2.

This definition together with independence assumption gives

pr(Pj) = Pr
(
Pj = P)

=
∏{pi | ci ∈ Cj} ×

∏{1− pi | ci ∈ (C − Cj)}
where Cj and C are the set of constraints in Pj and P , respectively.

Example 3.2 Let us consider probabilistic CSP with two variables A and B having domains
DA = {1, 2} and DB = {1, 2, 3}. Three probability constraints are given

(c1,0.5): (A,B) = {(1,2),(1,3),(2,1)}
(c2,0.6): A=1
(c3,0.7): (A=2) ∧ (B>1)

Lattice of possible problems for this probabilistic CSP is shown in Fig. 3.1 where the num-
ber associated with each problem is its probability distribution. As an example, computing
probability distribution for problem represented by {c2 , c3} is shown

Pr
(
(V,D, {c2 , c3}) = P)

= (1− p1)× p2 × p3 = (1− 0.5) × 0.6× 0.7 = 0.21 .

2Let us remind that definition of probability distribution enforces the following property
∑

Pj∈2P pr(Pj) = 1.
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{c1,c2,c3},0.21

{},0.06

{c2,c3},0.21

{c1},0.06

{c1,c3},0.14{c1,c2},0.09

{c2},0.09 {c3},0.14

Figure 3.1: Lattice of possible CSPs Pj = (V,D,Cj) each represented by Cj

We should note that the set of constraints {c2 , c3} is inconsistent. An example of consistent 3

problem may be given by the set of constraints {c1 , c2}.

As we have seen in our example, some problems in a lattice of problems may be incon-
sistent while some others are consistent.

Definition 3.6 A consistent sub-problem of P such that each of its strict super-problems is
inconsistent is maximal consistent in P .

Trivially, a solution of a CSP is also a solution of all its sub-problems. If C is consis-
tent, then classical CSP containing all constraints in C is obviously the maximal consistent
sub-problem by itself since in this case, all problems of 2P are consistent and so is the real
problem. Otherwise, the real problem may be inconsistent; the probability that P is consis-
tent is equal to

Pr(P consistent) =
∑{

pr(Pj) |Pj ∈ 2P , Pj consistent
}

.

Let us recall that Pr(P consistent) ≤ 1 due to the properties of probability distribution as
noted in Footnote 2 on page 13.

Example 3.2 (continuation) Set of constraints {c1 , c2 , c3}, {c1 , c3}, and {c2 , c3} repre-
senting particular problems are inconsistent. The two maximal consistent sub-problems are
{c1 , c2} and {c3}. Since only {}, {c1}, {c2}, {c3}, and {c1 , c2} are consistent, the proba-
bility that P is consistent corresponds to

Pr(P consistent) = 0.06
{}

+ 0.06
{c1}

+ 0.09
{c2}

+ 0.14
{c3}

+ 0.09
{c1,c2}

= 0.44 .

3.2.3 Solution

A naive kind of request would be to solve only the most probable CSPs (using classical CSP
techniques), or, since these problems may be inconsistent, to solve one of the most probable
consistent problems. However, these problems may have a very low probability and we will
also show that their solutions do not necessarily have the highest probability to solve P. It

3Let us recall that a problem (V, D, C) is consistent iff θ ∈ ΘV exits such that θ � C (Def. 2.4).
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seems to be more reasonable to search for an assignment with a maximal probability to be
a solution of P.

Assignment θ ∈ ΘV is the solution of the real problem P iff it doesn’t violate any con-
straint included in P.

The probability that θ is a solution of P = (V,D, C) is the probability that the constraints
it violates are not relevant in P, i.e.,

Pr(θ � C) =
∏

i{1− pi | θ � ¬ci} =
∑

j{pr(Pj) |Pj ∈ 2P , Pj = (V,D,Cj), θ � Cj} .

Definition 3.7 (satisfaction degree) Satisfaction degree of probabilistic CSP Ppr corresponds to
the probability that θ is a solution of P, i.e., Pr(θ � C).

Definition 3.8 (solution, consistency degree) Solution of probabilistic CSP Ppr is an assign-
ment θ∗ which maximizes the probability to be a solution of real problem P, i.e., θ∗ is such
that

Pr(θ∗ � C) = max
θ∈ΘV

Pr(θ � C) = max
θ∈ΘV

(∏
i
{1− pi | θ � ¬ci}

)
.

Pr(θ∗ � C) gives us consistency degree of probabilistic CSP Ppr.

It can be proved that θ∗ is solution of one of the maximal consistent sub-problems, say
P ∗ = (V,D, {ci ∈ C | θ∗ � ci}). It is also a solution of all sub-problems of P ∗, but does not
satisfy any problem outside this sub-part of the lattice. Besides inequality Pr(P ⊆ P ∗) ≥
Pr(P = P ∗) holds because P may also correspond to any of sub-problems of P ∗.

It should be outlined that P ∗ is not necessarily the most probable consistent problem in
the lattice; it may even not be one of its super-problems.

Example 3.2 (continuation) As we may see in Fig. 3.1, the most probable problems are given
by {c1 , c2 , c3} and {c2 , c3} having their probability equal to 0.21. They have maximal
consistent sub-problem {c3} with probability to be a real problem pr

(
V,D, {c3 }) = 0.14.

On the other hand, the most probable assignments are θ∗ ∈ {(1, 2), (1, 3)} corresponding
to P ∗ = {c1 , c2}. Their probability to be a solution of P is Pr(θ∗ � C) = 1−0.7 = 1−p3 = 0.3
because only the constraint c3 is violated.

3.3 Possibilistic Constraint Satisfaction

This section will formalize the notion of possibilistic constraint satisfaction firstly considered
by Thomas Schiex [Sch92]. Behind the proposal of this framework lies Zadeh’s possibility
theory together with the so called possibilistic logic [DP93].

3.3.1 Possibility Distribution

The main idea is to encapsulate preferences (or respective certainty degree) among labelings
in a “possibility distribution” over assignments. Such distribution induces possibility and
necessity measures over constraints.

Definition 3.9 Let us consider set of domain variables V together with the set of all possible
assignments ΘV . A possibility distribution on ΘV is a function π from ΘV to 〈0, 1〉.
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Assignments with possibility distribution equal to 1 may be compared with assignments of
classical constraint satisfaction in the sense that they don’t exclude the best possible problem
satisfaction while remaining assignments with lower possibility distribution are not able of
such full satisfaction. A degree of this inconsistency will be compared with help of the so
called sub-normalization degree.

Definition 3.10 π is said to be normalized iff assignment θ exists such that π(θ) = 1 holds.
Sub-normalization degree of π is defined as the quantity SN (π) = 1−maxθ∈ΘV

π(θ).

As you may intuitively expect we will try to find a possibility distribution with the smallest
sub-normalization degree. Computing such possibility distribution will lead us to those
assignments having value π(θ) maximal.

3.3.2 Problem Definition

The following definition will formalize the best Ππ and worst Nπ possible “evaluation” of
constraint wrt. selected possibility distribution π.

Definition 3.11 Let C be a set of every possible constraints on any non empty subset of V .
Possibility measure Ππ and necessity measure Nπ of possibility distribution π are functions from
C to 〈0, 1〉 defined by expressions

Ππ(c) = max
(θ∈ΘV )∧(θ�c)

(π(θ), 0) , Nπ(c) = min
(θ∈ΘV )∧(θ�¬c)

(1− π(θ), 1) .

Let us remark that from the definition of ¬c follows Nπ(c) = 1−Ππ(¬c).
Because of min and max operators used, the precise values of necessity or possibility

are not so important. It is the total pre-order induced by them which is essential. Thus,
necessity measure of constraint expresses preference degree, Nπ(c1) > Nπ(c2) expressing that
the satisfaction of constraint c1 is preferred to the satisfaction of c2.

Definition 3.12 (constraint, problem) Necessity-valued constraint is a pair (c, w) where c is
defined as a classical constraint by Def. 2.1 and w ∈ 〈0, 1〉 as a preference degree.

Possibilistic constraint satisfaction problem Pπ consists from set of domain variables V , set
of domains D, and set of necessity valued constraints C .

The necessity-valued constraint (c, w) expresses that Nπ(c) ≥ w, i.e., that the satisfaction
of c is at least w-necessary. The constraint (c, 1) should be absolutely satisfied while the
constraint (c, 0) is totally redundant as it expresses that the necessity measure of c should be
at least 0, which is always true.

Definition 3.13 (solution) Necessity-valued constraint (c, w) is satisfied by possibility distribu-
tion π (noted π � (c, w)) iff the necessity measure Nπ induced by π on C verifies Nπ(c) ≥ w.

Solution of possibilistic CSP (V,D,C) is each possibility distribution π that all necessity-
valued constraints are satisfied. We will say that π satisfies C .

Compared with the solution of CSP, possibilistic CSP has not a set of consistent assignments
on V but a set of consistent possibility distributions on the set of all assignments on V .

Solution of possibilistic CSP doesn’t require any optimal satisfaction of all constraints, it
is just sufficient to find such possibility distribution satisfying all constraints.
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Example 3.3 Let us consider possibilistic CSP P with variables {A,B,C} having initial do-
mains in {1,2,3} and with necessity-valued constraints

(a,0.8), a : A < B
(b,0.6), b : C = 1+B
(c,0.4), c : A = 3
(d,0.3), d : A = C

Let us take trivial possibility distribution π equal to 1 for all θ ∈ ΘV . Such possibility dis-
tribution has minimal sub-normalization degree but it doesn’t satisfy any of the constraints
because Nπ(c) < w holds for all (c, w). This is given by the fact that an assignment θ exists
for each constraint with the property θ � ¬c, i.e., Nπ(c) = min(θ∈ΘV )∧(θ�¬c)(1 − π(θ), 1) = 0.
Because the necessity degree of all constraints is higher than 0, this trivial possibility distri-
bution may be classified as an “unsuccessful” solution.

Now we will consider possibility distribution π equal to 0.2 for all θ ∈ ΘV . Then all
constraints are satisfied because all necessity degrees are equal to 0.8 and because this value
is sufficient wrt. preference degrees of all constraints. It means that this possibility distri-
bution is a solution as all the constraints are satisfied to necessary extent. Even if such
possibility distribution is classified to be a solution, its quality seems to be doubtful as its
sub-normalization degree SN (π) correspond to 0.8.

3.3.3 Consistency

This part will concentrate of selection of such possibility distribution which is not only suf-
ficient but may be considered as the optimal one.

Definition 3.14 (consistency degree) Consistency degree C of the possibilistic constraint satisfac-
tion problem (V,D,C) is defined as the maximum of 1− SN (π) for every π which satisfies C .
Inconsistency degree I is its complement to 1.

Inconsistency degree of possibilistic CSP may be estimated by determining the more im-
portant constraint which is not satisfied in any assignment θ ∈ ΘV . It may be shown that
inconsistency degree is equal to the smallest necessity degree of the unsatisfiable constraint
cfalse for all possibility distributions satisfying C .

The computation of the inconsistency degree of a possibilistic CSP is made easier by the
fact that one can define a maximal possibility distribution satisfying set of constraints C .

Theorem 3.1 (satisfaction degree) Let Pπ = (V,D,C) be a possibilistic CSP, we define the
maximal possibility distribution π∗P on ΘV by

∀θ ∈ ΘV : π∗P (θ) = min
((ci,wi)∈C)∧(θ�¬ci)

(1− wi, 1) .

Then for any possibility distribution π on ΘV , π satisfies Pπ iff π ≤ π∗P .

Proof: ∀(ci, wi) ∈ C : π � (ci, wi) ⇒ Nπ(ci) ≥ wi ⇒ min(θ∈ΘV )∧(θ�¬c)(1− π(θ), 1) ≥ wi

∀(ci, wi) ∈ C ∀θ ∈ ΘV such that θ � ¬ci : π(θ) ≤ 1− wi

∀θ ∈ ΘV : π(θ) ≤ min((ci,wi)∈C)∧(θ�¬c)(1− wi, 1) ⇒ π(θ) ≤ π∗P (θ) �
Informally maximal possibility distribution evaluates to which extent each assignment

may be considered as an optimal assignment, i.e., it corresponds to the notion of satisfaction
degree as it was introduced at the beginning of the chapter.
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Example 3.4 Let us consider possibilistic CSP P from Example 3.3. We will compute pos-
sibility distribution π∗P for all θ ∈ ΘV . First, π∗P ((1, 2, 3)) = 0.6 holds due to unsatisfied
constraint c . Second, π∗P (δ) = 0.4 holds for all assignments satisfying a and unsatisfying
b, e.g., δ = (1, 2, 2). All remaining assignments β (these assignments violate a) have their
possibility distribution π∗P (β) equal to 0.2.

Necessity degrees of constraints Nπ∗P are equal 0.8, 0.6, 0.4, 0.4 for constraints a, b, c , d,
respectively. As you may see π∗

P � C because Nπ∗P (c) ≥ w holds for all constraints (c, w) in
the problem.

Corollary 3.2 For possibilistic CSP P , we conclude that

• C(P ) = 1− SN (π∗P ) = maxθ∈ΘV
π∗P (θ)

• I(P ) = SN (π∗P ) = 1−maxθ∈ΘV
π∗P (θ)

Proof: ∀π � P ⇒ π ≤ π∗P
∀π � P,∀θ ∈ ΘV ⇒ (1− π(θ)) ≥ (1− π∗P (θ))
∀π � P ⇒ SN (π) ≥ SN (π∗P )
C(P ) = maxπ�C(1− SN (π)) = 1− SN (π∗P ) �

Theorem 3.3 Sub-normalization degree of π∗P is minimal among all possibility distributions
π satisfying constraints in P .

Proof: ∀π : π ≤ π∗P
∀π ∀θ ∈ ΘV : π(θ) ≤ π∗P (θ)
∀π : 1−maxθ∈ΘV

π(θ) ≥ 1−maxθ∈ΘV
π∗P (θ) ⇒ SN (π) ≥ SN (π∗P ) �

We have shown in Theorem 3.1 that π∗P is a maximal possibility distribution, i.e., assign-
ment θ ∈ ΘV having π∗P (θ) maximal belongs to those assignments with the highest value of
possibility distribution, i.e., π(δ) ≤ π∗P (θ) holds for all possibility distribution π and for all
δ ∈ ΘV .

Definition 3.15 (optimal assignment) Optimal assignment of possibilistic CSP P is each as-
signment θ ∈ ΘV such that π∗P (θ) is maximal, i.e., π∗P (θ) = maxδ∈ΘV

π∗P (δ) holds.

The problem of finding optimal assignment then consists in solving any of the following
equivalent min-max optimization problems

• C(V,D,C) = maxθ∈ΘV
min((ci,wi)∈C)∧(θ�¬ci)(1− wi, 1)

• I(V,D,C) = minθ∈ΘV
max((ci,wi)∈C)∧(θ�¬ci)(wi, 0)

Example 3.4 (continuation) Sub-normalization degree of π∗P is computed as SN (π∗P ) = 0.2,
which means that consistency C(P ) and inconsistency I(P ) degrees are equal to 0.8 and 0.2,
respectively.

There is only one optimal assignment θ having possibility distribution π∗
P (θ) maximal

which is the assignment θ = (1, 2, 3). Even if this assignment doesn’t satisfy constraints A=3
and A=C, it is able to satisfy more important constraints A<B and C=1+B which excludes
satisfaction of any above less important constraints.
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Let us note that such definition of optimality leads to the so called drowning effect: if
a constraint with preference degree w has to be necessarily violated then any constraint with
preference degree lower than w is simply ignored and its satisfaction or violation doesn’t
change possibility degree of final optimal assignment. Possible solutions of this problem will
be discussed in the following section as it considers framework having close relationships
with possibilistic CSPs.

3.4 Fuzzy Constraint Satisfaction

Possibility theory and calculus of fuzzy restrictions [DP93, MG81] belong to the main ar-
eas lying behind the proposal of the fuzzy constraint satisfaction framework studied in pa-
pers [DFP94, Rut94, DFP96, FLS93].

While possibilistic CSP was meant to express statements like: “It is 0.7 necessary that
the product be delivered before the 21th", fuzzy CSP also encapsulates statements such
as: “The product should be delivered not too late after 21th”. Both these statements are
modeled within fuzzy CSP with help of fuzzy relations. Let us shortly introduce their
notion (for further details we refer to basic literature about fuzzy sets and fuzzy reason-
ing [DP93, MG81, Nov86]). Fuzzy relation may be seen as a membership degree of k-tuple
(d1, . . . , dk) to a cartesian product D1 × · · · ×Dk expressed by membership function µ from
D1 × · · · ×Dk to unit interval 〈0, 1〉.

3.4.1 Problem Definition

Definition 3.16 (constraint) Let us consider values d1 ∈ D1, . . . , dk ∈ Dk. (Fuzzy) constraint
c is defined by a fuzzy relation, that assigns to each k-tuple (d1, . . . , dk) its level of preference
µc(d1, . . . , dk) from unit interval 〈0, 1〉.
Inequality µc(d1, . . . , dk) > µc(d′1, . . . , d′k) means that (d1, . . . , dk) is preferred to (d′1, . . . , d′k)
as values for variables v1, . . . , vk ∈ V . (d1, . . . , dk) is a forbidden k tuple if µc(d1, . . . , dk) = 0
holds and µc(d1, . . . , dk) = 1 means that (d1, . . . , dk) totally satisfies the constraint. More gen-
erally, µc(d1, . . . , dk) can also be interpreted as degree of satisfaction of the soft constraint c.

Constraint c and its fuzzy relation are said to be normalized if at least one tuple (d1, . . . , dk)
that totally satisfies the constraint c exists, i.e., ∃d1, . . . , dk ∈ D such that µc(d1, . . . , dk) = 1
holds.

Levels of preference within fuzzy relation of fuzzy constraint may express priorities with
the same interpretation as the preference degree of necessity-valued constraint in possibilis-
tic CSP framework (see Sect. 3.3). If a constraint c should be satisfied with a priority w, we
express it by a fuzzy relation

µc(d1, . . . , dk) = 1 ⇔ (d1, . . . , dk) � c

= 1− w ⇔ (d1, . . . , dk) � ¬c (3.1)

We may even change definition of any underlying fuzzy relation of constraint c such that
a new constraint cw is able to model given fuzzy relation together with priority w.

µcw(d1, . . . , dk) = max(1− w,µc(d1, . . . , dk)) . (3.2)
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Definition 3.17 (problem) Fuzzy constraint satisfaction problem Pµ consists from a set of fuzzy
constraints C = {c1, . . . , cm} restricting the possible values of variables from the set V each
ranging on a domain Di which is supposed to be finite.

Example 3.5 Let us state fuzzy constraint satisfaction problem P having variables A,B , do-
mains in D1 = D2 = {1,2,3} and constraints

c1: A = 1 @(1,0.2)
c2: min( abs(A - B) ), abs(A - B ) = 0 => @1

= 1 => @0.6
= 2 => @0.3

c3: max (A + B) @(A + B)/10

If c1 is satisfied its preference degree is equal to 1 otherwise it corresponds to 0.2. Prefer-
ence of constraint may be given by function which is shown by the constraints c2 and c3
where the preference of each tuple (A,B) depends on the value abs(A - B) for c2 or just
corresponds to (A + B)/10 for c3 .

Let us expect that the first constraint has a priority 0.3 (for definition of priorities see
Eqn. 3.1), the second and the third have the same priority 0.7. In correspondence with defi-
nition in Eqn. 3.2, we obtain a new CSP P ′

c1’: A = 1 @(1,0.7) ⇐ max(1-0.3,1)=1, max(1-0.3,0.2)=0.7
c2’: min( abs(A - B) ), abs(A - B)=0 => @1 ⇐ max(1-0.7,1)

=1 => @0.6 ⇐ max(1-0.7,0.6)
=2 => @0.3 ⇐ max(1-0.7,0.3)

c3’: max (A + B), A + B > 3 @(A+B)/10 ⇐ max(1-0.7,(A+B)/10)
A + B < 4 @0.3

3.4.2 Operations

Definition 3.18 (tuple projection) Let us consider two sets of variables X = {v ′1, . . . , v′k}
and Y = {v1, . . . , vl} such that X ⊆ Y ⊆ V holds, and any l-tuple (d1, . . . , dl) of values
for variables from Y . Tuple projection of (d1, . . . , dl) from Y to X written (d1, . . . , dl) ↓Y

X , is
defined as the tuple (d′1, . . . , d′k) with d′i = dj if v′i = vj .

Example 3.6 Let us consider tuple (1, 2, 3, 4, 5) corresponding to variables (A,B,C,D,E ),
then (1, 2, 3, 4, 5) ↓(A,B,C,D,E)

(D,A,E) = (4, 1, 5).

Next definition introduces fuzzy relation for constraint c which estimates to what extent
the assignment (d1, . . . , dk) of variables in Z satisfies two fuzzy constraints cX , cY concur-
rently.

Definition 3.19 (conjunctive combination) The conjunctive combination of two constraints
cX , cY restricting the possible values of two sets of variables X and Y is a constraint c given
by fuzzy relation over the possible values of Z = X ∪ Y . It is denoted by c = cX ⊕ cY and
defined by

µc(d1, . . . , dk) = min(µcX
((d1, . . . , dk) ↓Z

X), µcY
((d1, . . . , dk) ↓Z

Y )) .
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Definition 3.20 (productive combination) Having the same cX , cY as above, a constraint c
defined over Z = X ∪ Y is their productive combination c = cX ⊗ cY iff

µc(d1, . . . , dk) = µcX
((d1, . . . , dk) ↓Z

X)× µcY
((d1, . . . , dk) ↓Z

Y ) .

Definition 3.21 (average combination) Let c1, . . . , cm be constraints restricting values from
X1, . . . ,Xm subsequently. Their average combination c = avgm

i=1ci defined over X = X1 ∪
· · · ∪Xm is given by

µc(d1, . . . , dk) =
1
m

m∑
i=1

µci((d1, . . . , dk) ↓X
Xi

) .

Wrt. the commutativity and associativity of ⊕ and ⊗ operations, we may denote c1 ⊕ · · · ⊕
cm =

⊕
C and c1 ⊗ · · · ⊗ cm =

⊗
C for C = {c1, . . . , cm}. We will also denote by

⊙
the

general operation of combination with possible substitution
⊕

,
⊗

, and avg.
Note that the productive combination does not differentiate among assignments which

fully violate at least one constraint, i.e.,

(∃ci ∈ C : ci(d1, . . . , dk) = 0) ⇒ (µ⊗
C(d1, . . . , dk) = 0) .

The use of the combination rules underlies an assumption of commensurability between
preference levels pertaining to different constraints, i.e., user who specifies the constraints
must describe them by means of a unique preference scale.

Other operation we need is the so called projection of constraint cY defined over variables
from Y on a set of variables X = {vx1, . . . vxk}. Such operation estimates to what extent
the tuple (dx1, . . . , dxk), which is a partial assignment of Y , can be extended to a complete
assignment of Y that satisfies cY .

Definition 3.22 (projection) Given X = {vx1, . . . , vxk} and Y = {vy1, . . . , vyl} two sets of
variables such that X ⊆ Y ⊆ V , and a fuzzy constraint cY restricting the possible values of
Y , the projection of cY on X is a fuzzy constraint c = cY ⇓X restricting the possible values of
X. It is defined on Dx1 × · · · ×Dxk by

µc(dx1, . . . , dxk) = max
((dy1,... ,dyl)∈Dy1×···×Dyl)∧((dy1,... ,dyl)↓Y

X=(dx1,... ,dxk))
µcY

(dy1, . . . , dyl) .

Example 3.5 (continuation) Conjunctive combination of all three constraints c1 ⊕ c2 ⊕ c3
for tuple (1, 3) corresponds to

µc1⊕c2⊕c3(1, 3) = min(µc1((1)), µc2((1, 3)), µc3((1, 3))) = min(1, 0.3, 0.4) = 0.3 .

Projection of the third constraint on (B) for tuple (1) corresponds to

µc3⇓(B)
(1) = max(µc3(1, 1), µc3(2, 1), µc3(3, 1)) = max(0.2, 0.3, 0.4) = 0.4 .
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3.4.3 Consistency

Given a fuzzy constraint satisfaction problem Pµ with constraints C restricting the possi-
ble values of variables, combination µ⊙

C(d1, . . . , dn) estimates to which extent the variable
assignment (d1, . . . , dn) satisfies all constraints.

Definition 3.23 (satisfaction degree) Let us consider fuzzy CSP Pµ and a complete value
assignment (d1, . . . , dn) of variables in Pµ. Satisfaction degree of tuple (d1, . . . , dn) in Pµ is
given by µ⊙

C(d1, . . . , dn).

Satisfaction degree of (d1, . . . , dn) may be also seen as the membership degree to the set
D1 × · · · × Dn. The membership degrees discriminate the potential solutions since they
induce a complete order over the assignments. Similarly to possibility CSP, this order does
not depend on a numerical scale, i.e., it is more qualitative than quantitative.

Considering conjunctive combination, satisfaction degree of tuple (d1, . . . , dn) in prob-
lem Pµ is equal to the satisfaction degree of the constraint that is the least satisfied by
(d1, . . . , dn). Among all these tuples (complete assignments) we will search for those with
the maximal satisfaction degree.

Definition 3.24 (solution) Solution of fuzzy CSP Pµ is such assignment of variables which
satisfaction degree is maximal, i.e.,

max
(d1,... ,dn)∈D1×···×Dn

µ⊙
C(d1, . . . , dn) .

Constraints in a fuzzy CSP Pµ are not required to be normalized, which means that the
overall problem Pµ may not be normalized and no value tuple may exist with satisfaction
degree equal to 1. Having satisfaction degree of each value tuple for variables in a fuzzy
CSP we may define its consistency degree.

Definition 3.25 (consistency degree) Let us consider fuzzy CSP Pµ with constraints C , vari-
ables V = {v1, . . . , vn} and their domains D = D1 ∪ · · · ∪ Dn. Consistency degree C for the
fuzzy CSP Pµ corresponds to

C(Pµ) = max
(d1,... ,dn)∈D1×···×Dn

µ⊙
C(d1, . . . , dn)

Inconsistency degree I(Pµ) is defined as its complement I(Pµ) = 1− C(Pµ).

As you may see, the consistency degree corresponds to satisfaction degree of solution of
fuzzy CSP. Consistency degree may be also defined with help of projection on empty set of
variables, i.e.,

C(Pµ) =
⊙

C ⇓∅ .

Such projection estimates to what extent an empty tuple can be extended to a complete
assignment of V that satisfies combination of all constraints. That is exactly computed by
consistency degree.

Example 3.5 (continuation) Let us compute solution for the problem P ′. First we should
know satisfaction degrees for all tuples: (3, 3) have degree 0.6, both tuples (2, 3) and (3, 2)
correspond to degree 0.5, tuple (2, 2) to 0.4, and all remaining tuples have their satisfaction
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degree equal to 0.3 wrt. preferences of either second or third constraint. Solution has the
maximal satisfaction degree, i.e., assignment (3, 3) is the single solution of P ′. Consistency
degree of P ′ is then equal to 0.6.

Conjunctive combination never discriminates solutions which satisfy fuzzy CSP to the
same degree, even if some of them satisfy more constraints than other. More precisely, all
constraints having preference degree lower then inconsistency degree I(Pµ) do not have any
effect on how solutions are ranked since only the preference degree of the most important
violated constraint is relevant. This already mentioned drowning effect4 doesn’t occur for
average and productive combination. In [FLS93], two refinements of the conjunctive prin-
ciple are discussed based on inclusion and lexicographic ordering to avoid drowning effect
without excluding the conjunctive combination.

Let us note that the fuzzy CSP with conjunctive combination has the same semantics
as possibilistic CSP taking into account preferences defined over constraints instead over
each tuple of constraint (in Sect. 3.3). While their definitions are different, semantic behavior
remains the same: assignments with maximal preference degree of the least satisfied con-
straints are the best one.

3.5 Partial Constraint Satisfaction

Freuder & Wallace [FW92] formalize the notion of partial constraint satisfaction which tries
to find optimal solution of over-constrained problem with help of metrics over set of CSPs.
Definition of this approach was the first attempt to take into account various frameworks via
one common meta-framework.

Definition 3.26 A problem space is a partially ordered set (PS,≤) with PS as a set of CSPs
and ordering ≤ over these problems. P1 ≤ P2 holds if the set of solutions to P2 is a subset of
the set of solutions to P1. If P1 ≤ P2 holds and sets of solutions P1 and P2 are not equal, we
will write P1 < P2 and say that P1 is weaker than P2.

The problem may be relaxed by enlarging the domain of a variable, enlarging the domain of
constraint, removing a variable, or removing a constraint.

Definition 3.27 (problem) Partial constraint satisfaction problem 〈P, (PS,≤),M, (N,S)〉 con-
sists from initial problem P , a problem space PS containing P , a metric M on that space,
and necessary N and sufficient S solution distances (S < N holds).

Variants of the distance function may compare how many solutions were added relaxing P ,
count of the P ′s augmentations needed to get from P to P ′, or maximal count of the satisfied
constraints.

Definition 3.28 (solution) Solution of partial CSP 〈P, (PS,≤),M, (N,S)〉, is a CSP P ′ from
the problem space PS along with solutions to that problem where the metric distance of P ′

from P is less than N , i.e., M(P,P ′) < N . A solution is sufficient if the distance is less than
or equal to S. An optimal solution is one where the metric distance of P ′ from P is minimal
over the problem space.

4This property was firstly discussed for possibilistic CSPs in Sect. 3.3.
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As a satisfaction degree of partial CSP may be considered the value of distance function
M(P,P ′). The value of consistency degree corresponds to the satisfaction degree of optimal
solution, i.e., minM M(P,P ′).

All approaches described to solve constraint satisfaction problems with preferences may
be seen as a class of partial CSP. For description of this correspondence, you may see Sec-
tions 3.6.3 and 3.8.

3.6 Valued Constraint Satisfaction

Valued constraint satisfaction [SFV95, BFM+99, BFM+96, Sch00b] defines valuations over
constraints as a basic preferences of this meta-framework. It proposes a general structure
based on totally ordered monoid over valuations. Frameworks introduced within this chap-
ter may be defined as a special classes of valued constraint satisfaction problem.

3.6.1 Valuation Structure

To express the fact that a constraint may eventually be violated, each constraint is associated
with the so called valuation introducing general constraint preference. Valuations are given
by the following structure.

Definition 3.29 (structure) A valuation structure is defined by (E,~,�,>,⊥) where

• E is a set whose elements are called valuations;

• � is a total ordering over E;

• > and ⊥ are maximum and minimum elements of E given by �;

• ~ is a commutative, associative binary operation on E that satisfies

– identity: ∀a ∈ E : a ~⊥ = a;

– monotonicity: ∀a, a′, b ∈ E : (a � a′) ⇒ (
(a ~ b) � (a′ ~ b)

)
.

From these axioms, it may be also inferred that the element > is an absorbing element, i.e.,
∀a ∈ E : (a ~>) = >.

The ordered set E allows different levels of violations to be expressed. Commutativity
and associativity guarantee that the valuation of an assignment depends only on the set of
valuation of the violated constraints, and not on the way they are aggregated. Monotonic-
ity guarantees that the valuation of an assignment that satisfies a set C ′ of constraints will
always be as good as the valuation of any assignment which satisfies a subset of C ′.

Two additional properties will be also considered for particular specifications of valua-
tion structure as they significantly influence classification of frameworks defined as classes
of valued CSP. The first one characterize the following fact: if something is locally im-
proved, it shouldn’t be globally ignored. Valuation structure satisfying such property is
strictly monotonous, i.e.,

strict monotonicity: ∀a, b, c ∈ E :
(
(a � c) ∧ (b 6= >)

) ⇒ (
(a ~ b) � (c ~ b)

)
. (3.3)



3.6. VALUED CONSTRAINT SATISFACTION 25

The second important property is the idempotency of ~, i.e.,

idempotency: ∀a ∈ E : a ~ a = a . (3.4)

Such property guarantees that a constraint that is satisfied by all the solutions of a CSP can
be added to the CSP without changing its meaning.

Lemma 3.4 Idempotency is incompatible with strict monotonicity as soon as E has more
than two elements.

Proof: ∀a ∈ E : ⊥ � a � > identity⇒ (⊥ ~ a) � (a ~ a)
strict monotonicity⇒ a � (a ~ a) and this is

contradictory with idempotency. �

3.6.2 Problem Definition

Definition 3.30 (constraint) A valued constraint is a tuple (c, ϕ(c)) where c is a classical con-
straint and ϕ is a function from set of constraints C to set of valuations E called valuation of
constraint.

Definition 3.31 (problem) A valued CSP PE is defined by a classical CSP (V,D,C), a val-
uation structure S = (E,~,�,>,⊥), and by a valuation of all constraints ϕ, i.e., PE =
(V,D,C, S, ϕ).

Each assignment will be valuated by combining the valuations of all violated constraints
using ~.

Definition 3.32 (satisfaction degree) Given a valued CSP PE = (V,D,C, S, ϕ) and an as-
signment θ ∈ ΘX ,X ⊆ V , the valuation of assignment θ wrt. PE is defined by

νPE
(θ) = ~

(c∈C)∧(Vc⊆X)∧(θ �¬c)
ϕ(c) .

Let us notice entailment of this definition for valuation structure with idempotent ~. Once
an assignment violates a constraint with valuation w, it doesn’t matter how many constraints
with valuation w are violated — valuation of assignment is not changed at all.

νPE
is used to distribute valuations to particular assignments introducing potential solu-

tion, i.e., it gives us satisfaction degree for each assignment. With this we are able to define
solution of valued CSP.

Definition 3.33 (solution, consistency degree) A solution of valued CSP PE = (V,D,C, S, ϕ)
is an assignment θ∗ having minimal valuation wrt. to ordering �. This minimal valuation
will be called valuation of problem PE .

Valuation of the problem PE corresponds to its consistency degree.
As we search for assignment with minimal valuation computed by combining violated

constraints by ~, you may see that the element> corresponds to unacceptable violation and
is used to express hard constraints while ⊥ element corresponds to complete satisfaction.
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3.6.3 Relaxation

Valued constraint satisfaction may be seen as a partial constraint satisfaction (see Sect. 3.5)
as it defines relaxation lattice equipped with a distance measure.

Definition 3.34 Let PE = (V,D,C, S, ϕ) be a valued CSP. A relaxation of valued CSP PE is
a classical CSP (V,D,C′) where C ′ ⊂ C .

Relaxations are naturally ordered by inclusion of constraint sets. Let us consider consistent
relaxation having the set of constraint C ′ maximal. This relaxation is a solvable problem
with minimal distance from original problem. It is also possible to order relaxations with
help of a satisfaction degree of valuation to particular relaxations.

Definition 3.35 Given a valued CSP PE = (V,D,C, S, ϕ) and its relaxation (V,D,C ′), the
valuation of relaxation (V,D,C′) is

νPE
(V,D,C ′) = ~

c∈(C−C′)
ϕ(c) .

The valuation of the top of the relaxation lattice, CSP (V,D,C), is obviously ⊥. The valu-
ations of other relaxations can be understood as a distance to this ideal problem. The best
assignments of V are the solutions of the closest consistent problems of the lattice. The
following corollary ensures that the order on problems defined by this distribution of valu-
ations is consistent with the inclusion order on relaxations.

Corollary 3.5 Given a valued CSP PE = (V,D,C, S, ϕ) and P ′ = (V,D,C ′) with P ′′ =
(V,D,C ′′) its two relaxations. Then proposition

C ′  C ′′ ⇒ νPE
(V,D,C ′) � νPE

(V,D,C ′′)

holds. If ~ is strictly monotonic, the inequality becomes strict if the valuation of PE is not>.

Proof: Let us consider a = ~c∈(C′′−C′)ϕ(c). Due to monotonicity we obtain
(⊥ � a

) ⇒((⊥ ~ νPE
(P ′′)

) � (
a ~ νPE

(P ′′)
))

. Finally, conclusion νPE
(P ′′) � νPE

(P ′) is inferred from
identity and Def. 3.35. Strict inequality is obtained by application of strict monotonicity
instead of monotonicity. �
This corollary shows that strict monotonicity is indeed very desirable property. Its exis-
tence guarantees that by removing a violated constraint from constraint set, valuation of
corresponding relaxation will be increased. In this case, optimal consistent relaxations are
selected to be consistent and to have minimal valuation together with maximal constraint set.

Theorem 3.6 Assignment θ ∈ ΘV is solution of valued CSP PE iff it is solution of consistent
relaxation P ′ with minimal valuation. At the same time, νPE

(θ) = νPE
(P ′) holds.

Proof: Solution of PE is an assignment with minimal combination of valuations of con-
straints which have to be removed from constraint set to obtain consistent solution. Relax-
ation with minimal valuation has to combine valuations of the “same” constraints. Signs of
quotation stands for constraints with identical valuations in case of idempotent ~. But then
their valuations change neither νPE

(θ) nor νPE
(P ′). �
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3.6.4 Classes of Valued CSP

By specification of evaluation structure, particular classes of valued CSP are obtained which
give us a unifying view to already discussed CSPs with preferences. These specifications are
summarized in Table 3.1. We should note that we have excluded fuzzy CSP applying tuple

Framework E � ~ > ⊥
CSP {0, 1} < ∧ 0 1

Weighted CSP N ∪ {+∞} > + +∞ 0

Probabilistic CSP 〈0, 1〉 < × 0 1

Possibilistic CSP 〈0, 1〉 > max 1 0

Table 3.1: Summary of specifications (E,�,~,>,⊥)

preferences instead of constraint preference — fuzzy CSP may be easily and naturally associ-
ated with valued CSP via their straightforward relation with semiring CSP (see Sections 3.7.5
and 3.8).

Classical CSP

General definition of valued CSP includes classical constraint satisfaction (see Sect. 2.1) as
the most simple framework. Valuation structure is given by trivial boolean lattice E =
{0, 1}, 1 ≡ ⊥ ≺ 0 ≡ >,~ ≡ ∧ (or min). All constraints have valuations >, i.e., function νPE

returns for each assignment with at least one violated constraint > as the maximal element.
Valuation of CSP corresponds to ⊥ (complete satisfaction) only if at least one assignment
with all satisfied constraints and valuation ⊥ exists and this would be selected upon mini-
mization. The operation ∧ is both idempotent and strictly monotonic — set of valuations has
only two elements, i.e., their coexistence is not contradictory.

Weighted CSP

Specification of valuation structure corresponds to (N ∪ {+∞}, >,+,+∞, 0) for weighted
CSP (in Sect. 3.1). For MAX-CSP, valuations of all constraints correspond to 1. Weights of
violated constraints are cumulated by + for each assignment, valuation of CSP is given by
assignment having this sum minimal. The operation + is strictly monotonic.

Probabilistic CSP

This framework assigns to each constraint its probability of existence in the real problem
which is ill known. νPE

has to compute probability that constraints violated by assignment
are not relevant (don’t exist) in the real problem. Because all constraints are independent we
obtain νPE

(θ) =
∏

(c∈C)∧(θ�¬c)(1− p) where p is the probability of existence of constraint c in
the real problem. Each constraint has valuation ϕ(c) = 1 − p. Valuations are combined by
× operation as ~. Constraints with probability 1 may not be violated, i.e., > ≡ 0. Resulting
ordering � of E = 〈0, 1〉 has to correspond to <. Among all valuations of assignments, the
one with maximal probability (wrt. <) is selected which is in correspondence with minimum
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computed by ordering �. Overall valuation structure is then given by (〈0, 1〉, <,×, 0, 1).
Operation × is again strictly monotonic.

This definition is dual to the one presented in original paper [SFV95, BFM+96] about
valued CSP with ϕ(c) = p and S = (〈0, 1〉, >,~, 1, 0). However, this specification expects
more complicated definition of operation: x ~ y = 1− (1− x)× (1− y).

Possibilistic CSP

Necessity-valued constraint in possibilistic CSP (see Sect. 3.3) corresponds to constraint with
its valuation in valued CSP. Valuation structure is given by tuple (〈0, 1〉, >,max, 1, 0) which
conforms with expected semantics of possibilistic constraint satisfaction: an optimal assign-
ment minimizes preference degree of the most important violated constraint. This class is
the only one having idempotent operation together with cardinality of valuation set higher
than two.

3.6.5 Variable Valued Constraint Satisfaction

Variable VCSP is the only one framework taking into account preferences over variables
showing possible impact of such preferences via a special application. This approach was
only briefly described in [LV97, VLS96] and applied for the daily management of an earth
observation satellite. There, each variable is associated with some weight expressing its
importance. The objective is to produce a partial assignment of the problem variables which
satisfies all imperative constraints and minimizes sum of weights of un-assigned variables.

This situation may be expressed with help of general valued CSP framework (in which
search for a complete assignment is included): just add to each original domain a special
rejection value, and associate to each variable a soft unary constraint expressing the cost of
assigning it the rejection value. It means that such preferences of variables may be fully
handled via preferences of constraints.

3.7 Semiring-based Constraint Satisfaction

Semiring-based constraint satisfaction [BMR97b, BFM+99, BMR95, BMR97a] belongs to the
meta-frameworks for solving constraint satisfaction problems with preferences. The frame-
work is based on a semiring structure, where the set of semiring specifies the values to be
associated with each tuple of values of the variable domain, and the two semiring operations
(+ and ×) to model constraint projection and combination, resp.

3.7.1 Semirings and SCSP

Definition 3.36 (structure) A semiring is a tuple 〈A,+,×,0,1〉 such that

• A is a semiring set;

• 0,1 ∈ A;

• + is commutative, associative and 0 is its unit element;

• × is associative, distributes over +, 1 is its unit element and 0 is its absorbing element.
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A c-semiring (constraint-based semiring) is a semiring 〈A,+,×,0,1〉 such that + is idempo-
tent (see Eqn. 3.4) with 1 as its absorbing element and × is commutative.

Let us consider the relation ≤S over A such that a ≤S b iff a + b = b. Then it is possible
to prove that: ≤S is a partial order, 0 is its minimum, and 1 its maximum. The relation ≤S

is used to compare tuples and constraints: if a ≤S b it intuitively means that b is better
than a. Let us emphasize that ≤S may not be total ordering which is a significant difference
from the ordering applied within valued CSP (see Sect. 3.6) having all preferences totally
ordered. We say that semiring values a, b ∈ A are incomparable and denote it by a <>S b iff
(a + b 6= a) ∧ (a + b 6= b).

Other property which may be derived from attributes of c-semiring is the monotonicity
of both semiring operations, i.e., a ≤S a′ implies a + b ≤S a′ + b and a × b ≤S a′ × b for all
a, a′, b ∈ A.

Definition 3.37 A constraint system is a tuple CS = (S,D, V ) where S is a c-semiring, D is
a finite set (the domain of the variables) and V is an ordered set of variables.

Definition 3.38 (constraint) Given a semiring S = 〈A,+,×,0,1〉 and a constraint system
CS = (S,D, V ), a constraint is a pair (def , con) where con ⊆ V and def : D|con| → A.

Therefore, a constraint specifies a set of variables (the ones in con), and assigns to each tuple
of values over these variables an element of the semiring.

Definition 3.39 (problem) SCSP (Soft Constraint Satisfaction Problem) is a pair (C, con) over
a constraint system (S,D, V ) where con ⊆ V and C is a set of constraints.

con is the set of variables of interest for the constraint set C , which however may concern
also variables not in con .

3.7.2 Operations

Let us recall that tuple projection t ↓X
Y projects value tuple t defined on variables in set X to

value tuple over variables in set Y (for details see Def 3.18).

Definition 3.40 (combination) Given c1 = (def 1, con1) and c2 = (def 2, con2), their combina-
tion c1 ⊗ c2 is the constraint (def , con) defined by con = con1 ∪ con2 and

def (t) = def 1(t ↓concon1
)× def 2(t ↓concon2

) .

Due to commutativity and associativity of multiplicative operation, we may denote c1⊗· · ·⊗
cn by

⊗n
i=1 ci =

⊗
C for C = {c1, . . . , cn}.

In other words, combining two constraints means building a new constraint involving all
the variables of the original ones associating to each value tuple over such variables certain
semiring element. This semiring element is obtained by multiplying the elements associated
by the original constraints to the appropriate sub-tuples.

Definition 3.41 (projection) Given a constraint C = (def , con) and a subset I of V , the pro-
jection of c over I , written c ⇓I is the constraint (def ′, con ′) where con ′ = con ∩ I and

def ′(t′) =
∑

t/t↓conI∩con=t′
def (t) .
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Informally, projecting means elimination of some variables. This is done by association to
each tuple over the remaining variables a semiring element which is the sum of the elements
associated by the original constraint to all the extensions of this tuple over the eliminated
variables.

Summarizing, combination is performed via the multiplicative operation of the semiring,
and projection via the additive operation.

3.7.3 Solution

Definition 3.42 (satisfaction degree, solution) The solution of an SCSP P = (C, con) is the
constraint

Sol(P ) = (
⊗

C) ⇓con .

That is, all constraints are combined, and then projected over the variables in con . That way,
we get the constraint over con which is “induced” by the entire SCSP. Generally this con-
straint distributes by its def function evaluation on each tuple (assignment), i.e., (

⊗
C) ⇓con

may be seen as a satisfaction degree in accordance with its usual meaning.

Definition 3.43 (consistency degree) Semiring value of the optimal solutions is called the
best level of consistency of an SCSP P and it is defined by blevel(P ) = Sol(P ) ⇓∅.

Informally, maximal (wrt. ≤S) semiring value of tuples in solution Sol (P ) corresponds to
the best level of consistency. Set of those tuples will be referred as a set of optimal tuples.
In contrast to the Def. 3.42 as a solution, just optimal tuples are conforming with the usual
definition of solution as it was introduced at the beginning of this chapter.

3.7.4 Equivalence and Refinement

First let us introduce the notion of equivalence on problems as it is usually presented for
semiring-based constraint satisfaction.

Definition 3.44 (constraint ordering) Let us consider two constraints c1 = (def , con1), c2 =
(def , con2) over (S,D, V ). Then we define the constraint ordering vS as the following partial
ordering: c1 vS c2 iff def 1(t) ≤S def 2(t) holds for all tuples t of values from D.

Notice, that if c1 vS c2 and c1 wS c2 then c1 = c2.

Definition 3.45 (equivalence I.) Let us consider SCSPs P1 = (C1, con) and P2 = (C2, con).
Then we define problem preorder vP as: if P1 vP P2 if Sol(P1) vS Sol(P2). If P1 vP P2

and P2 vP P1, then they have the same solutions. Thus we say that P1 and P2 are problem
equivalent and write P1 ≡ P2.

This notion of equivalence may be useful to show that SCSP framework is monotone (C ∪
C ′, con) vP (C ∪ C ′, con).

Another notion of equivalence and refinement may be introduced to compare problems
having different semiring structures. We will propose new definitions based on equivalence
defined within valued CSP framework [BFM+99, SFV95] comparing problems with total or-
dering of valuations. However, our extension is able to compare all classes of SCSP including
those with partial semiring ordering.
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In the following, we will consider two constraint systems CS = (S,D, V ) and CS ′ =
(S′,D, V ) together with SCSPs P = (C, con) and P ′ = (C ′, con) having solutions Sol(P ) =
(def , con) and Sol(P ′) = (def ′, con).

Definition 3.46 (refinement) The SCSP P is a refinement of P ′ if for any pair of tuples t =
(t1, . . . , t|con |), r = (r1, . . . , r|con |) having ti, ri ∈ D such that the proposition def ′(t) <S′

def ′(r) holds then the total ordering def (t) <S def (r) is implied.
The SCSP P is a strong refinement of P ′ if this property holds for all def 1 and def 2 defined

by (def 1, con⊆) ∈ C and (def 2, con⊆) ∈ C ′ having con⊆ ⊆ con .

The main point is that if P is a refinement of P ′, then the set of corresponding optimal tuples
of P is included in the set of optimal tuples of P ′; the problem of finding optimal tuples of
P can be reduced to the same problem in P ′.

VCSP framework which originally defines refinement doesn’t include any partial order-
ing. Let us study consequences of SCSP definition wrt. existence of incomparable semiring
values (a <>S b). First we should note that incomparable semiring values def ′(t) and def ′(r)
in original SCSP P ′ doesn’t entail any relation within refined problem: they may become ei-
ther comparable or incomparable in P. This conclusion is in correspondence with standard
definition of refinement, e.g., within set theory (if something is incomparable within the orig-
inal partially ordered set, just refinement may be able or even aimed to order it). However,
opposite statement has a strict consequence, as demonstrated by Corollary 3.7.

Corollary 3.7 Let us expect that SCSP P is the refinement of P ′ and consider a pair of tuples
t = (t1, . . . , t|con |), r = (r1, . . . , r|con |) having ti, ri ∈ D such that def (t) <>S def (r) then
def ′(t) <>S′ def ′(r) is implied (see Fig. 3.2).
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Figure 3.2: SCSP P is a refinement of SCSP P ′

Proof: Let us expect that def ′(t) <>S′ def ′(r) doesn’t hold. This means that def ′(t) and
def ′(r) are ordered. Having any ordering between these semiring values necessitate the
corresponding ordering between def (t) and def (r) due to Def. 3.46. As these elements are
incomparable wrt. corollary’s presumption we have obtained a contradiction compelling the
proof. �

Definition 3.47 (equivalence II.) Two SCSPs P and P ′ will be said (strongly) equivalent iff
each one is a (strong) refinement of the other.

Equivalent SCSPs define the same ordering on tuples of variables in V and have the same
corresponding sets of optimal tuples: the problem of finding optimal tuples is equivalent in



32 CHAPTER 3. FRAMEWORKS

both SCSPs. Note that two equivalent SCSPs are not required to give the same values on
tuples but only that they order them similarly, i.e., this definition is weaker than Def. 3.45.

As an entailment of Corollary 3.7 we obtain that if something is incomparable in one of
the equivalent problems, it has to be incomparable also in the related problem.

In order to be able to compare SCSP classes that relies on different semiring structures,
the notion of polynomial refinement is introduced.

Definition 3.48 (polynomial time refinement) Given S and S′, two c-semirings, a polyno-
mial time refinement from S′ to S is a function φ that

• transforms any SCSP P ′ = (C ′, con) having set of constraints C ′ =
⋃

i (def ′i, con i)
over constraint system (S ′,D, con) in a P = (C, con) having C =

⋃
i (def i, con i) over

(S,D, con) where def i = φ ◦ def ′i holds for all i such that P is a refinement of P ′;

• is deterministic polynomial time computable.

If polynomial time refinement from S ′ to S exists then any SCSP P ′ over S ′ can be solved by
first applying this polynomial time refinement to P ′ and then solving the resulting problem
over S, i.e., problems defined over S ′ are not harder than problems defined over S.

3.7.5 Classes of SCSP

By specification of semiring structure, particular classes of SCSP are obtained. These specifi-
cations are summarized in Table 3.2.

Framework A + × 0 1

CSP {0, 1} ∨ ∧ 0 1

Weighted CSP N ∪ {+∞} min + +∞ 0

Probabilistic CSP 〈0, 1〉 max × 0 1

Possibilistic CSP 〈0, 1〉 min max 1 0

Fuzzy CSP 〈0, 1〉 max min 0 1

Lexicographic CSP N〈0,1) ∪ {⊥} maxlex t ⊥ ∅

Table 3.2: Summary of specifications 〈A,+,×,0,1〉

Having look on this table and comparing it with the table of valued CSP’s classes, a cor-
respondence between semiring-based CSP and valued CSP may be observed easily. More
detail justification of this relationship will be described in the Sect. 3.8. Also description of
particular classes is similar to those presented in section about valued CSP (Sect. 3.6.4). In
comparison with valued CSP’s classes we will describe fuzzy CSP together with another
framework, the so called lexicographic CSP.

Fuzzy CSP

Introducing fuzzy CSP (see Sect. 3.4) as a class of SCSP is given by straightforward corre-
spondence of both combination and projection operations. Semiring set is defined by inter-
val 〈0, 1〉 having the best element equal to 1 and the worst one to 0. As a result we have
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obtained semiring (〈0, 1〉,max,min, 0, 1) for conjunctive combination. To consider produc-
tive combination, min operation is replaced by × operation. However, average combination
is not possible to include as an instance of SCSP as avg is not associative, which is a basic
requirement to semiring structure. Non-existence of this property excludes independence
on the order of application of semiring values.

Lexicographic CSP

Lexicographic CSPs [FLS93] were proposed as an extension of fuzzy CSP in order to suppress
their drowning effect (see page 23). This extension is also significant for possibilistic CSP
where this effect was also observed (see page 19).

Semiring values for class of lexicographic CSPs correspond to multi-sets (see Appendix A
for description of multi-sets). An element of semiring set is either an element ⊥ or a multi-
set of elements over 〈0, 1), i.e., A = N〈0,1) ∪ {⊥}. ⊥ element is intended for those tuples
of constraints which are completely forbidden while the empty multi-set ∅ represents the
best value. Multi-set union t extended to treat ⊥ as an absorbing element is used for con-
straint combination. Projection of constraints is realized with help of lexicographic maxi-
mum maxlex (see Eqn. A.5) over multi-sets.

3.8 Relationships between Frameworks

3.8.1 Preferences for Constraints and Tuples

Frameworks studied within this chapter may be divided into two parts. Weighted, proba-
bilistic, possibilistic, and valued CSPs associate a preference with each constraint, i.e., con-
straint is given as a pair (c, w) consisting from a classical constraint c (see Def. 2.1) and
some kind of preference w depending on the type of framework. Fuzzy, lexicographic, and
semiring-based CSPs take constraint as a function defined on tuple of values and giving as
a result some level of preference, i.e.,

c : D1 × · · · ×Dk → W

with D1, . . . ,Dk as underlying domains of variables in constraint c and W as a set of possible
preferences.

Correspondence between those approaches was already observed for fuzzy CSP which is
able to model constraints with priorities having the same interpretation as necessity-valued
constraints of possibilistic CSP (see Eqns. 3.1 and 3.2).

Generally tuple preferences are able to express constraint preferences easily, e.g., the best
possible preference is assigned to all tuples which satisfy given constraint and remaining
tuples obtain required (complement of) constraint preference.

Opposite transformation replaces constraint c : D1×· · ·×Dk → W by a set of constraints
c1, . . . , ck, where k is the cardinality of the range of c, i.e.,

k = card{w ∈ W | ∃θ ∈ D1 × · · · ×Dk : c(θ) = w} .

However, this transformation may be used if k is finite for all constraints. As an example
where this condition is not satisfied we may consider preference given by distance of two real
numbers. Sufficient condition to obtain finiteness of k consists in taking only finite domains
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of variables into considerations. With this we obtain a finite number of assignments, i.e.,
upper bound of k corresponds to the number of assignments.

3.8.2 Meta-Frameworks

In Sect. 3.7.5, we have already mentioned existing relations between two main presented
meta-frameworks, valued and semiring-based CSPs. 3.7.5. We will shortly summarize their
formal relation which was studied by the papers [BFM+99, BFM+96] in detail.

The most striking difference lies in the SCSP framework ability to represent partial or-
ders whereas valued CSP exploits a totally ordered sets of the valuations. Partial orders
are interesting for multi-criteria optimization since the product of two c-semirings yields
a c-semiring defining a partial order.

As the domain of variables within SCSP framework is expected to be finite, transforma-
tions of constraints between SCSP and valued CSP frameworks are feasible. The assump-
tion of total order even gives the two frameworks the same theoretical expressive power.
The previous section already discussed correspondence between tuple preferences and con-
straint preferences. Both semiring and valuation structure are related together through re-
placement of additive semiring operation by min operation which is applied in valued CSP
to compare valuations on different assignments.

The last presented meta-framework, partial constraint satisfaction defines problem space
of relaxed problems together with a metric on this space. We have show in Sect. 3.6.3 that
partial CSP corresponds to valued CSP defining relaxation lattice together with distance
measure.

3.8.3 Basic Frameworks

Particular basic frameworks (weighted, probabilistic, possibilistic, fuzzy, lexicographic CSP)
were described as classes of valued and semiring-based CSP. Section 3.7.4 presents the no-
tion of equivalence, refinement, and polynomial time refinement within semiring-based con-
straint satisfaction. With these definitions in mind, we may shortly summarize known rela-
tionships between particular classes as they have been described in [BFM+99, SFV95].

All classes of SCSPs may be partitioned according to the idempotency of × semiring op-
erator: classical, possibilistic, and fuzzy CSP on one side and weighted, probabilistic, and
lexicographic CSP on the other. This partition is an agreement that polynomial transforma-
tions between instances of different classes exist for the problem of finding an optimal tuple
(or corresponding decision problem of existence of a tuple with a semiring value higher than
a given a ∈ A can be defined). An isthm between idempotent and non-idempotent classes is
provided by lexicographic and possibilistic CSP as polynomial time refinement from possi-
bilistic CSP to lexicographic CSP may be defined.

An exception should be taken into consideration for probabilistic CSP which is related
by simple isomorphism with weighted CSP taking values in R instead of N. Because real
numbers are not countable this isomorphism is not a true polynomial refinement. This com-
plication can be fixed by efficient (but approximate) transformation a probabilistic CSP in
a weighted CSP, real numbers being approximated by floating point numbers.



Chapter 4

Constraint Hierarchies

Constraint hierarchies [BFBW92, BMMW89] belong to first and favorite approaches which
try to handle preferences in constraint systems. In many situations, it is desirable to be able
to state both required (or hard) and preferential (or soft) constraints. The required constraints
must hold. Since other constraints are merely preferences, the system should try to satisfy
them if possible, but a solution is found nevertheless if they cannot be all satisfied.

Example 4.1 Let us have two variables A and B and constraint hierarchy with two preferen-
tial levels (strong and weak)

required A + B = 0
strong A = 1
weak B = 0

The first required constraint has to be satisfied. The second constraint at the strong level
can be also satisfied and the solution {A = 1, B = -1} is derived. The third weakest
constraint is violated due to existing stronger inconsistent constraints.

The theory of constraint hierarchies was studied at the University of Washington by
Borning, et al. [WB93, BFBW92, BMMW89, Wil93, WB89]. Logical definition of the soft hi-
erarchical constraints based on the second-order (and later first-order) logic and interpre-
tation ordering were described in [Sat90, SA91]. Later theoretical studies include fuzzify-
ing of hierarchies [KL98], partial ordering of constraints [CL98b] to achieve higher expres-
sivity of the framework, or redefinition of comparators [HMY96] and compositional mod-
els [JJGH96, Jam96, Jam95] to improve efficiency of hierarchies.

4.1 Problem Definition

Definition 4.1 (constraint) Labeled constraint is a pair c@l having c as a classical constraint
defined by Def. 2.1 which is labeled by l defining level of constraint in hierarchy. The levels
are totally ordered and symbolic names could be assigned to particular levels of constraints.
The names are mapped to the integers 0 . . . n. The level 0, with the symbolic name required,
is always reserved for constraints which have to be satisfied.

Definition 4.2 (problem) A constraint hierarchy (CH) is a finite set C of labeled constraints
over variables in a set V having their domains in D. C0 denotes the set of required constraints

35
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in C , with their labels removed. C1 is a set of the constraints at the strongest non-required
level, an so forth through the weakest constraints in Cn, where n is the number of non-
required levels in the CH. The set Ck for each k > n is empty.

Such CH will be denoted by PCH = (V,D,
⋃n

i=0 Ci). Often we will refer to CH by its set
of constraints C only.

Definition of an assignment θ and a set of assignments θV of CH (V,D,
⋃n

i=0 Ci) together
with satisfied and unsatisfied constraint in CH corresponds with Defs. 2.2 and 2.3 taking as
a set of constraints all constraints from

⋃n
i=0 Ci.

Definition 4.3 (solution) A solution to a CH C is such assignment θ for the variables V in
C that satisfies at least required constraints. In addition, the solution satisfies non-required
constraints at least as well as any other assignment that also satisfies required constraints,
i.e., solution set S corresponds to

S0 = {θ | ∀c ∈ C0 cθ holds}
S = {θ | θ ∈ S0 ∧ ∀δ ∈ S0 ¬better(δ, θ, C)}

where better is the so called comparator which is an irreflexive and transitive relation compar-
ing two assignments of hierarchy.

We also say that solution θ is better for CH C if no assignment better than θ exist.

However, in general, better will not provide a total ordering — there may exist θ and δ
such that θ is not better than δ and δ is not better than θ.

To compare assignments, we will need some measure of how well a particular assign-
ment satisfies a given constraint. We will define the so called error function indicating satis-
faction of the constraint wrt. assignment θ ∈ ΘV .

Definition 4.4 Error function e is a function e : C ×ΘV → R+ with the property

∀θ ∈ ΘV ∀c ∈ C : e(cθ) = 0 ⇔ θ � c .

We will refer e(cθ) as an error of constraint c wrt. the assignment θ.

Trivial (or predicate) error function may be applied for all domains D. This function defines
value for e(cθ) to be equal 1 for remaining undefined function values, i.e., e(cθ) = 1 for
unsatisfied constraint c in assignment θ. When the domain D is a metric space with distance
function dist, metric error function may be defined. We can specify such function by

∀d1, d2 ∈ D : e(d1 = d2) = dist(d1, d2) .

The following definition allows us to describe satisfaction degree of each assignment of
CH1.

Definition 4.5 Let us consider set of constraints C with its constraints taken in any fixed
order (c1, . . . , ck). An error of constraint set C = (c1, . . . , ck) wrt. assignment θ ∈ ΘV is
defined by tuple E(Cθ) = [e(c1θ), . . . , e(ckθ)].

1General definition of satisfaction degree for all frameworks is described on page 11.
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4.2 Traditional Comparators

A number of comparators was defined, each of which gives rise to a different way of defining
the set of solutions to a CH. We can classify types of comparators as global, local, or regional.
For a local comparator, each constraint is considered individually. Global comparators aggregate
the errors of all constraints at a given level. Regional comparator still considers each constraint
individually but unlike local comparators, two solutions that are incomparable at higher
levels may be still compared at lower levels.

Local Comparator

Definition 4.6 An assignment θ locally-better than another assignment δ must do exactly as
well as δ for all constraints in levels 1 . . . k − 1, and at level k, θ must do at least as well as δ
for all constraints, and strictly better for at least one.

locally-better(θ, δ, C) ≡
∃k ∈ 1 . . . n such that

∀i ∈ 1 . . . k − 1 ∀c ∈ Ci : e(cθ) = e(cδ)
∧ ∃c ∈ Ck : e(cθ) < e(cδ)
∧ ∀d ∈ Ck : e(dθ) ≤ e(dδ)

A locally-predicate-better is the locally-better comparator using the trivial error function and
a locally-metric-better is the locally-better comparator using a domain metric for computing
the error of constraints.

To obtain comparison with satisfaction degree of other approaches discussed in Chap. 3,
we will define an error over assignments of CH by an array of values of error functions over
particular levels of CH and over their constraints.

Definition 4.7 (satisfaction degree I.) An error E of CH PCH = (V,D,
⋃n

i=0 Ci) = (V,D,C)
for locally-better comparator is a function defined over assignments θ ∈ θV such that

E(Cθ) =

{
[E(C1θ), . . . , E(Cnθ)] if ∀c ∈ C0 : θ � c

+∞ if ∃c ∈ C0 : θ � ¬c

Having definition of error for CH, we may consider also a dual definition of CH solution
corresponding to an assignment with minimal error E where the notion of minimization is
in accordance with comparator definition. The error of solution would give us consistency
degree for CH with locally-better comparator. Similar dual definitions may be taken into
account for all remaining comparators.

Regional Comparator

Regionally-better comparator extends locally-better comparator to enable comparison of as-
signments which are incomparable by locally-better comparators.

Definition 4.8 An assignment θ is regionally-better than another assignment δ if, for each
level through some level k − 1, the levels are incomparable, and at the level k the value of
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error function is strictly less for at least one constraint and less than or equal for all the rest.

regionally-better(θ, δ, C) ≡
∃k ∈ 1 . . .n such that

∀i ∈ 1 . . . k − 1
∀c ∈ Ci : e(cθ) = e(cδ)
∨ ∃c, d ∈ Ci : e(cθ) < e(cδ) ∧ e(dδ) < e(dθ)

∧ ∃c ∈ Ck : e(cθ) < e(cδ)
∧ ∀d ∈ Ck : e(dθ) ≤ e(dδ)

Regionally-metric-better and regionally-predicate-better comparators apply corresponding error
functions on regionally-better comparator.

An error of CH for regionally-better comparator remains the same as for locally-better com-
parator (see Def. 4.7).

Global Comparators

Finally we will define a schema globally-better for all global comparators. This schema is
parametrized by a function g that combines the errors of all the constraints at a given level.

Definition 4.9 An assignment θ is globally-better than another assignment δ if, for each level
through some level k− 1, the combined errors g(Ci, θ) of the constraints after applying θ are
equal to that after applying δ, and at the level k it is strictly less.

globally-better(θ, δ, C, g) ≡
∃k ∈ 1 . . . n such that

∀i ∈ 1 . . . k − 1: g(Ci, θ) = g(Ci, δ)
∧ g(Ck, θ) < g(Ck, δ)

Particular global comparators are given by specification of function g. Such general defini-
tion allows us to define satisfaction degree for all global comparators by the following.

Definition 4.10 (satisfaction degree II.) An error E of CH PCH = (V,D,
⋃n

i=0 Ci) = (V,D,C)
for global comparator defined by a function g is given for each assignment θ ∈ θV such that

E(Cθ) =

{
[g(C1, θ), . . . , g(Cn, θ)] if ∀c ∈ C0 : θ � c

+∞ if ∃c ∈ C0 : θ � ¬c

Many global comparators introduce weights for constraints expressing how constraints
at the same level are comparable each other.

Definition 4.11 A weight of each constraint is defined by function w : C → W where W is
a totally ordered set. Let≤W be an ordering of the set W then w(c) ≤W w(d) means that the
weight of d is more preferred than the weight of the constraint c.
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A weight can be represented by the set of natural numbers N or positive real numbers R+.
Following g functions are usually applied to define particular global comparators

weighted-sum-better : g(Ci, θ) ≡
∑

{c∈Ci}
w(c) e(cθ) ; (4.1)

worst-case-better : g(Ci, θ) ≡ max
{c∈Ci}

w(c) e(cθ) ; (4.2)

least-squares-better : g(Ci, θ) ≡
∑

{c∈Ci}
w(c) e(cθ)2 . (4.3)

Orthogonal to the choice of particular global comparator, we can select an appropri-
ate error function for the constraints. This way comparators weighted-sum-predicate-better,
weighted-sum-metric-better, and so forth, may be defined.

The so called unsatisfied-count-better is a special case of weighted-sum-predicate-better
comparator, using weights of 1 on each constraint; it counts the number of unsatisfied con-
straints in making comparisons.

4.3 New Comparators

This section will concentrate on the proposal of a new global comparator and the description
of a local comparator we have firstly introduced in [Rud98a] and discussed its properties
in [Rud98c].

4.3.1 Lexicographic-Better Comparator

The disadvantage of the worst-case better comparator is the so called drowning effect: if a con-
straint c with weight w(c) has to be necessarily violated then any constraint at the same level
with weight lower than w is simply ignored and its satisfaction or violation doesn’t change
satisfaction degree of final solution.

Example 4.2 Let us expect that we need to organize two meetings during weekdays of one
week (variables A,B , domains {mon..fri} ). Each meeting has to be organized in a differ-
ent day (if A is considered as a first of them then A<B holds). Several strong requirements
are given by organizers and invited speakers. Organizers would prefer at least two free days
between meetings (B-A≥3@strong , w=20). Two of invited speakers would like to meet on
Wednesday (A,B=wed@strong , w=10 where A,B=wed corresponds to (A=wed) ∨(B=wed) )
and the other one prefers Monday (A,B=mon@strong , w=5). The last one prefers Thursday
(A,B=thu@strong , w=5). Requirements of remaining participants are not so important but
they may be considered as a secondary constraints: some people would appreciate Tues-
day (A,B=tue@weak , w=10) and few others would welcome Monday and Thursday, resp.
(A,B=mon@weak, w=5 and A,B=thu@weak , w=5).

Constraint hierarchy having two variables A,B with domains {mon..fri} looks like

required: c0: A<B
strong: c1: B-A ≥3 w=20

c2: A,B=wed w=10
c3: A,B=mon w= 5
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c4: A,B=thu w= 5
weak: c5: A,B=tue w=10

c6: A,B=mon w= 5
c7: A,B=thu w= 5

Worst-case-predicate-better comparator selects as a solution assignment θ = (tue , fri ) sat-
isfying only constraints c0 , c1 , and c5 with E(C, θ) = [10, 5]. It means that requirements
of all invited speakers are violated even if there exist assignments partially satisfying their
requirements. This undesirable behavior of worst-case-better comparator is influenced by
the high weight of c2 which has to be violated wrt. c0 and c1 ([c0 ∧ c1] ⇒ [(A in
mon,tue) ∧ (B in thu,fri)] ⇒ [A,B 6=wed] ). As a consequence, violation or satisfac-
tion of c3 and c4 is not able to change the value of g(C1, θ). Subsequently the most important
constraint at the weak level (c5 ) outweighs solution of the hierarchy towards (tue , fri ).

Drowning effect was already observed for fuzzy and possibilistic constraint satisfaction
problems (see sections 3.4 and 3.3). Within fuzzy constraint satisfaction framework, refine-
ments of an order of assignments were proposed by the paper [FLS93] and discussed in
section 3.7.5. This solution is based on set inclusion and lexicographic ordering. We will
apply similar method and propose lexicographic-better comparator. This comparator belongs
to the class of global comparators, application of g to any assignment θ of level Ci will corre-
spond to multi-set, however. It means that equality and inequality in globally-better schema
must be replaced by operations over multi-sets.

Definition 4.12 A lexicographic-better comparator is defined by the schema for global com-
parators (see Def. 4.9) such that for each assignment θ and level Ci = {c1, . . . , cmi} of CH
C the value of g(Ci, θ) corresponds to multi-set M = {w(c1)e(c1θ), . . . , w(cmi)e(cmiθ)}, i.e.,
g(Ci, θ) ∈ NN holds for e(cθ), w(c) ∈ N. Accordingly equality = together with total order-
ing < for globally-better schema is replaced by equality and inclusion @ over multi-sets
(Eqn. A.2).

It means that lexicographic-predicate-better comparator adds to multi-set g(Ci, θ) either w(c)
(θ � ¬c) or 0 (θ � c) for each constraint c ∈ Ci.

Because the definition of lexicographic-better comparator applies globally-better schema,
the satisfaction degree for this comparator is given by Def. 4.10.

Example 4.1 (continuation) The assignment δ = (tue , fri ) which was selected by worst-
case-predicate-better comparator has the value g(C1, δ) equal to {0, 10, 5, 5} wrt. violated c2 ,
c3 , and c4 . g(C2, δ) corresponds to {0, 5, 5} as c6 and c7 are unsatisfied. However, assign-
ment θ = (mon, thu ) which lexicographic-predicate-better comparator selects as a solution
is able to satisfy strong constraints c1 ,c3 , and c4 and also weak constraints c6 and c7 . This
solution evaluates particular g(Ci, θ) to {0, 10, 0, 0} and {10, 0, 0} and it is selected due to
the best satisfaction of constraints at the higher level (c2 has to be violated in each solution
due to required c0 and strong c1 with higher weight). Each assignment satisfying strong
constraints c1 , c3 , c4 has to violate c5 ([c1 ∧ c3 ] ⇒ ¬c5 ) and satisfy c6 (c3 ⇒ c6 ) and c7
(c4 ⇒ c7 ).
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4.3.2 Ordered-Better Comparator

Another possibility considering local approach to errors of constraints is introduced by
a comparator, which uses an ordering (weights) of constraints at every level.

Definition 4.13 An assignment θ is ordered-better than another assignment δ if, for each of
the constraints through some level k − 1, the error after applying θ is equal to that after
applying δ, and at the level k the errors are compared with help of constraint weights w(c)
from Def. 4.11.

ordered-better(θ, δ, C) ≡
∃k ∈ 1 . . . n such that
∀l ∈ 1 . . . k − 1 ∀c ∈ Cl : e(cθ) = e(cδ)
∧ ∃c ∈ Ck : e(cθ) < e(cδ)
∧ ∀d ∈ Ck such that w(c) ≤W w(d) : e(dθ) ≤ e(dδ) .

The following part clarifies relations between ordered-better and locally-better compara-
tors. In the following, we suppose that C = {c1, c2, . . . , cm} is a CH with levels

⋃n
i=0 Ci

having weights given by W , ≤W , and w.

Lemma 4.1 Every ordered-better solution θ of hierarchy C is locally-better.

Proof: Let us assume that ordered-better assignment θ is not locally-better. Then an assign-
ment ω exists which is locally-better than θ. Next let Ck be the first level, where assignments
ω and θ have different values of error function on some constraints. Because the assign-
ment ω is locally-better than assignment θ:

∀d ∈ Ck : e(dω) ≤ e(dθ) . (4.4)

The level Ck is the first level where any error functions differ, so the next proposition follows
from ordered-better(θ, ω,C) (see Definition 4.13)

∃d ∈ Ck : e(dθ) < e(dω) (4.5)

which is contradictory with the proposition (4.4). As the result, we obtain that no solution ω
locally-better than θ exists and the assignment θ has to be the locally-better solution. �

There are locally-better solutions, which are not ordered-better. For example, let us con-
sider hierarchy C = C1 = {c, d} where w(d) <W w(c) holds. Let there exist solutions ω and
θ such that e(cω) > e(cθ), e(dω) < e(dθ). Both solutions could be locally-better but only θ
could be ordered-better because it is ordered-better than ω.

The next part concentrates on exact specification of relation between locally-better and
ordered-better comparator.

Definition 4.14 Let C =
n⋃

i=0
Ci be hierarchy and w : C → W weight function. Hierarchy

refinement C/w is defined by
n⋃

i=0
Ci/w, Ci/w =

ni⋃
j=1

Cij if the proposition C0/w = C0 holds

and Cij is given for ∀i ∈ 1 . . . n, ∀j ∈ 1 . . . ni by a formula (∀c ∈ Ci ∀d ∈ Ci : (c ∈ Cij , d ∈
Cil, l ∈ 1 . . . ni, j < l) ⇔ (w(d) <W w(c))).



42 CHAPTER 4. CONSTRAINT HIERARCHIES

Because the weights have no meaning in required level we can suppose the same weights
for every c ∈ C0. So C0/w = C0 = C01 is justified. The level C0 is required and all constraints
have to be satisfied for every solution. Therefore, we may restrict ourselves to levels 1 . . . n
when comparing potential valuations.

Hierarchy refinement may be seen as a hierarchy where the level Cij is more important
than Ckl, iff (i < k) ∨ ((i = k) ∧ (j < l)) holds. Let us also note that constraints c, d ∈ Cij
have the same weight due to totally ordered set of weights W .

Lemma 4.2 For a given hierarchy C , weight function w, and assignments θ and δ the propo-
sition ordered-better(θ, δ, C) ⇔ locally-better(θ, δ, C/w) holds.

Proof: (⇒): Let θ and δ be assignments of hierarchy C and let θ be ordered-better assignment
than δ. Let k be the first level, where the error function on assignments θ and δ differs, and
let c ∈ Ck be a constraint with maximal weight w(c) such that e(cθ) 6= e(cδ) holds. Next let
c ∈ Ckl holds for some l ∈ 1 . . . nk in hierarchy C/w. We show that θ is locally-better than δ
in C/w.

1. e(dθ) = e(dδ) holds for every d ∈ Cij , i ∈ 1 . . . (k − 1), j ∈ 1 . . . ni because the same
holds for every d ∈ Ci, i ∈ 1 . . . (k − 1) (error function on θ and δ differs in the level k
for the first time).

2. e(dθ) = e(dδ) holds for every d ∈ Ckj, j ∈ 1 . . . (l−1). Firstly d ∈ Ck and w(c) <W w(d)
is obtained from Definition 4.14 and j < l. The constraint c has maximal weight in Ck

such that error function on θ and δ differs. This entails e(dθ) = e(dδ) for d ∈ Ckj .

3. e(cθ) < e(cδ) holds because c is the first by level and weight with distinct values of
error function on θ and δ, and θ is ordered-better than δ.

4. e(dθ) ≤ e(dδ) holds for every d ∈ Ckl because θ is ordered-better than δ, d ∈ Ck and
w(c) =W w(d).

We have shown that proposition e(dθ) = e(dδ) holds for ∀d ∈ Cij , (i < k)∨ ((i = k)∧ (j < l),
next e(cθ) < e(cδ) and ∀d ∈ Ckl : e(dθ) ≤ e(dδ) hold. This means that θ is locally-better than
δ in C/w.

(⇐): This proof is very similar to opposite direction. Let θ be locally-better than δ in C/w.
Let error function differ for c ∈ Ckl firstly. So e(cθ) < e(cδ) stands. The statement ∀i < k ∀d ∈
Ci : e(dθ) = e(dδ) is implied from locally-better comparator definition (∀i∀j such that (i <
k) ∨ ((i = k) ∧ (j < l))∀d ∈ Cij : e(dθ) = e(dδ)). For the same reason, e(dθ) = e(dδ) holds
for ∀d ∈ Ck such that w(c) <W w(d). The proposition e(dθ) ≤ e(dδ) holds for ∀d ∈ Ck :
w(d) =W w(c) because d ∈ Ckl holds, error functions on θ and δ differ on Ckl firstly and θ is
locally-better than δ in C/w. So, all necessary conditions are satisfied and θ is ordered-better
than δ in C . �

Theorem 4.3 The assignment θ is ordered-better solution of hierarchy C with weight func-
tion w, iff θ is locally-better solution of hierarchy refinement C/w.

Proof: Entailment of Lemma 4.2. �
This theorem allows us to define an error of CH (V,D,C) for ordered-better comparator (and

its satisfaction degree) as an error of CH C/w for locally-better comparator (see Def. 4.7).
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4.4 Algorithm for Solving the Hierarchy

This part gives tools which allow to propose an algorithm for solving constraint hierarchy
with ordered-better comparator.

Definition 4.15 A sequence SC = 〈c1, . . . , cm〉 is hierarchy-ordering of hierarchy C with m
constraints if all constraints of SC are sorted by the level of hierarchy (ci ∈ Ck, cj ∈ Cl, k < l
implies i < j) and by the ordering ≤W (for ci, cj ∈ Ck such that w(cj) <W w(ci) implies
i < j). A sequence 〈c1, c2, . . . , ci〉 is denoted SCi for i ≤ m.

Definition 4.16 Let SC = 〈c1, c2, . . . , cm〉 be a hierarchy-ordering of hierarchy C . Recur-
sively defined set S = Sm is called ordering-solution-set of hierarchy-ordering SC for

S0 = {θ | θ is an assignment of SC} ,

Si = {θ | θ ∈ Si−1 ∧ e(ciθ) = min
ω∈Si−1

e(ciω)} for i ∈ 1 . . . m .

Theorem 4.4 Let SC be a hierarchy-ordering of C and a set S be the ordering-solution-set
of SC . Then S is the set of ordered-better solutions.

Proof: The proof is by induction on the number of constraints m. The base case is for m = 1.
The hierarchy is C = {c1} and only one SC = 〈c1〉 exists. We obtain S = S1 = {θ | ∀ω :
e(c1θ) ≤ e(c1ω)} and so every assignment θ ∈ S is an ordered-better solution.

Suppose that the proposition holds for a hierarchy with m constraints and now describe
the case with m + 1 constraint. Let us suppose θ ∈ Sm+1 and show for every assignment δ
that either θ is ordered-better than δ for SCm+1 or δ is not ordered-better than θ for SCm+1

(θ and δ are not comparable for SCm+1).

1. δ 6∈ Sm+1 ∧ δ ∈ Sm : The error function for every ci (i ∈ 1 . . . m) is defined uniquely
which follows from the assumption δ ∈ Sm and the definition of ordering-solution-
set. Inequality e(cm+1θ) < e(cm+1δ) is implied from the assumptions δ 6∈ Sm+1 and
minimal value for cm+1’s error function. Together both these properties induce that θ
is ordered-better than δ.

2. δ ∈ Sm+1 : The error function for every constraint is the same again, so no constraint
ci (i ∈ 1 . . . m + 1) exists such that e(cθ) > e(cδ) (or <) and neither δ nor θ is ordered-
better than second assignment for SCm+1.

3. δ 6∈ Sm : θ ∈ Sm and so δ can not be ordered-better than θ for SCm from induction’s
assumptions. We show that adding of cm+1 does not change this situation for SCm+1.
The value of error function for some i ∈ 1 . . . m differs for θ and δ (from δ 6∈ Sm). Let
i be the first of them. Then e(ciθ) < e(ciδ) holds. Because ci is contained in the most
important level having the most important weight with such property, assignment δ
can not be ordered-better than θ.

Therefore every θ ∈ S is an ordered-better solution. �
However, there are ordered-better solutions which can not be obtained via any hierarchy-

ordering as its ordering-solution-set. We will demonstrate this proposition by the following
example.
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Example 4.3 Let us consider constraint hierarchy having only one level C = C1 = {c1, c2} =
{B >= 10, B =< 8} where w(c1) = w(c2) holds. An assignment {B = 10} is obtained for
hierarchy-ordering 〈c1, c2〉 and {B = 8} for 〈c2, c1〉. Both assignments are ordered-better but
for example an assignment {B = 9} is ordered-better, too.

The algorithm for solving constraint hierarchies with ordered-better comparator is based
on the Theorem 4.4 and Indigo algorithm [BAFB96a, BAFB96b] for local propagation. The
key idea in Indigo is that lower and upper bounds on variables (i.e., intervals) are propa-
gated, and the constraints are processed from strongest to weakest, tightening the bounds
on variables using interval arithmetic [Ben95] step by step.

The overall solution for CH with ordered-better comparator is divided into two steps:

1. sorting constraints in every level Ci of hierarchy {C0, C1, . . . , Cn} using weights given
by w and their ordering ≤W to an output sequence of constraints OCi,

2. the application of the Indigo algorithm with sorted input constraints by the sequence
〈OC0, OC1, . . . , OCn〉.

Theorem 4.5 Given an acyclic set of constraints, the algorithm computes ordered-metric-
better solution.

Proof: Input constraints for the Indigo algorithm define hierarchy-ordering SC using OC0,
OC1, . . . , OCn. Indigo algorithm minimizes error function in the order given by hierarchy-
ordering SC . Those are requirements of Theorem 4.4 and so we obtain an ordered-metric-
better solution as a result of the algorithm. �

Let us denote m = |C|, k = |V | and consider the complexity of algorithm. Sorting partic-
ular disjoint sets of altogether m constraints takes O(m log m) steps. The complexity of the
last step is O(mk) [BAFB96b]. As a result, we get the total complexity O(m(k + log m)).

4.5 Relationships with Semiring-based CSP

This section introduces the most comparators of CHs as the classes of SCSP. Because the
semiring-based constraint satisfaction represents problems defined over finite domains, we
will consider CHs over finite domains in the following. The basic semiring structures are
given for all existing classes in Table 4.1, their details are discussed in the following part of
the section. The remaining comparators (worst-case-better, regionally-better) will be shown
being incompatible with properties of c-semiring (monotonicity of × over ≤S , associativity
of +, resp.).

Each CH consists from several levels of soft constraints and one level of hard constraints.
To model required satisfaction of hard constraints, ⊥ element representing 0 is introduced
and operation × is extended to handle ⊥ as an absorbing element for all proposed × op-
eration. Each hard constraint has its semiring value equal to ⊥ for all prohibited tuples
which ensures its unacceptable violation. The semiring value of remaining acceptable tuples
doesn’t play any role for all hard constraints, the most valid semiring value for these tuples
is maximum element 1 however. Particular levels C1, . . . , Ch of soft constraints are modeled
with help of h-tuples denoted either by ~a = (a1, . . . , ah) or by ~A = (A1, . . . , Ah) wrt. the
meaning of particular element of h-tuple.
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SCSP Class comparator A + × 0 1

unsatisfied-c.-b.

Weighted-SCSP weighted-sum-b. Nh ∪ {⊥} ~min ~+ ⊥ ~0

least-squares-b.

Lexicographic-SCSP lexicographic-b. (NN)h ∪ {⊥} ~minlex ~t ⊥ ~∅
locally-pred.-b. (NU )h ∪ {⊥} ~min� ~t ⊥ ~∅

Local-SCSP locally-metr.-b. (NN×U)h ∪ {⊥} ~min�lex ~t ⊥ ~∅
ordered-b. (NN×U )h

′ ∪ {⊥} ~min�lex ~t ⊥ ~∅

Table 4.1: Particular comparators of CHs with specification of 〈A,+,×,0,1〉

4.5.1 Global Comparators

Global comparators will define two basic SCSP classes: weighted-SCSP for weighted-sum-
better, unsatisfied-count-better, and least-squares-better comparators and lexicographic-SCSP
for lexicographic-better comparator.

Weighted-sum-better comparator. Let us consider constraint c@l in CH C having weight
w(c) defined over variables (v1, . . . , vk). Then c corresponds to semiring constraint (def , con)
such that con ≡ (v1, . . . , vk) and

∀θ ≡ [v1 = d1, . . . , vk = dk] : def (d1, . . . , dk) = (0
1
, . . . , 0

l−1
, w(c) × e(cθ)

l

, 0
l+1

, . . . , 0
h
) . (4.6)

Operation × is equivalent to classical vector sum denoted by ~+, i.e.,

~a ~+~b ≡ (a1, . . . , ah)~+(b1, . . . , bh) = (a1 + b1, . . . , ah + bh) .

Semiring set corresponds to set of h-tuples extended by ⊥ element as proposed above, i.e.,
A = Nh ∪ {⊥} for e(cθ), w(c) ∈ N. Additive operation is performed via lexicographic mini-
mum over h-tuples, i.e.,

[ ~min(~a,~b) = ~a] ≡ [∃i (ai < bi) ∧ (∀j > i : ai ≤ bi)] .

Minimum 1 corresponds to h-tuple of zeros ~0 representing complete satisfaction. Finally, c-
semiring corresponds to S = (Nh∪{⊥} , ~min, ~+ ,⊥ , ~0) for weighted-sum-better comparator.

Unsatisfied-count-better comparator. This comparator is a special version of weighted-
sum-predicate-better comparator having all constraint weights equal to 1. Corresponding
weighted-SCSP class simplifies definition of the semiring constraint to def (d1, . . . , dk) =
(0, . . . , 0, e(cθ), 0, . . . , 0) having value e(cθ) ∈ {0, 1} on l-th position for c@l.

Least-squares-better comparator. The distinction from weighted-sum-better-comparator
is given by change of semiring constraint reflecting replacement of error function by its
square root, i.e., def (d1, . . . , dk) = (0, . . . , 0, w(c) × e(cθ)2, 0, . . . , 0) with non-zero value on
l-th position for c@l.
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Worst-case-better comparator. The first idea leading to the definition of SCSP class for
worst-case-better comparator is a replacement of multiplicative operation: for each level
of CH, the worst satisfied constraint is searched, i.e.,

~max(~a,~b) ≡ (
max(a1, b1), . . . ,max(ah, bh)

)
.

The trouble is that such multiplicative operation is non-monotonous over semiring order-
ing ≤S

2, i.e., we are in contradiction with basic attributes of c-semiring. Let us remind that
[a ≤S b] ≡ [ ~min(a, b) = b] and show an example demonstrating non-monotonous behavior
of × for this definition of semiring.

Example 4.4 Let (0, 1) and (1, 0) belong to semiring set A = N2 ∪ {⊥}. Then (0, 1) ≥S (1, 0)
holds. After multiplication of both sides by (1, 0) we should obtain ~max((0, 1), (1, 0)) ≥S

~max((1, 0), (1, 0)) from monotonicity. However, we compute as a result inverse ordering
(1, 1) <S (1, 0) which gives us a contradiction with monotonicity.

The aim of the following part is to show that each multiplicative operation of c-semiring
for worst-case-better comparator has to be non-monotonous over semiring ordering, i.e., no
SCSP class computing worst-case-better solution of CH exists.

Let us take a CH C = C1 ∪ C2 = {c1, c2} ∪ {c3} such that w(c1)e(c1θ) ≤ w(c2)e(c2θ)
holds for each assignment θ. Corresponding SCSP class may be defined by (C, con) =
({(def i, con i) | ci = (def i, con i), i = 1 . . . 3}, con1 ∪ con2 ∪ con3). This SCSP class has to fulfill
the inequality concerning presumption for c1 and c2. Because both constraints belong to the
same level of CH and c2 is always more important than c1 (from presumption)

def 1(t ↓concon1
) ≤S def 2(t ↓concon2

) (4.7)

holds for all tuples t defined on variables in con . Constraint c3 is contained in a lower level
than c1, i.e., ∀t : def 3(t ↓concon3

) ≤S def 1(t ↓concon1
) holds. Now let us combine both sides of this

inequality with c2, i.e., we obtain

def 3(t ↓concon3
)× def 2(t ↓concon2

) ≤S def 1(t ↓concon1
)× def 2(t ↓concon2

) (4.8)

from monotonicity of × over ≤S . Both constraints c1 and c2 belong to the same level of CH
and c2 outweighs c1 due to Eqn 4.7. As the worst-case-better comparator has to have worst-
case behavior on each level, the equality def 1(t ↓concon1

)× def 2(t ↓concon2
) =S def 2(t ↓concon2

) holds
for all tuples t defined on variables in con wrt. Eqn 4.7. Finally we derive

def 3(t ↓concon3
)× def 2(t ↓concon2

) ≤S def 2(t ↓concon2
)

from Eqn. 4.8. However, inverse ordering is implied from hierarchical behavior of compara-
tor (c3 together with c2 is more important than c2 alone) which is a contradiction compelling
validity of monotonicity condition from Eqn. 4.8.

Lexicographic-better comparator. We have defined this comparator in order to avoid the
drowning effect of worst-case-better comparator and to eliminate its contra-intuitive behav-
ior (details in Example 4.2). This change also removes undesirable non-monotonicity and it
leads to the existence of a SCSP class.

2Operation × is non-monotonous over ordering≤S iff ∃a, a′, b ∈ S : [a ≤S a′]⇒ [(a× b) >S (a′ × b)].
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Lexicographic-better comparator differs from the above mentioned comparators by con-
sidering multi-sets as the elements Ai of h-tuple ~A = (A1, . . . , Ah). The best semiring value
corresponds to empty multi-set ~∅ (tuple of ∅’s) and the worst one is⊥ element again. Consid-
ering a constraint in CH, corresponding semiring constraint is distinguished from semiring
constraint of weighted-sum-better comparator (see Eqn. 4.6) by the definition of def function
as follows

∀θ ≡ [v1 = d1, . . . , vk = dk] : def (d1, . . . , dk) = (∅
1
, . . . , ∅

l−1
, {w(c) × e(cθ)}

l

, ∅
l+1

, . . . , ∅
h
)

having {w(c) × e(cθ)} as a multi-set. Semiring set is given by h-tuple of multi-sets given by
relationN to N, i.e., (NN)h. Additive operation ~t is given by a union of multi-setst (Eqn. A.1)
applied to each element of h-tuple, i.e.,

~A ~t ~B = (A1, . . . , Ah) ~t (B1, . . . , Bh) = (A1 tB1, . . . , Ah tBh) . (4.9)

Multiplicative operation ~minlex is a lexicographic extension of minimum minlex operation
(defined in Eqn. A.3)

~A = ~minlex ( ~A, ~B) = ~minlex ((A1, . . . , Ah), (B1, . . . , Bh)) ≡
[(A1 6= B1) ∧ (A1 = minlex (A1, B1))] ∨
[(A1 = B1) ∧ ((A2, . . . , Ah) = ~minlex ((A2, . . . , Ah), (B2, . . . , Bh)))] . (4.10)

4.5.2 Local Comparators

Situation for local comparators is a bit complicated as they compare error of each constraint
separately and don’t subsume them together level by level. This fact is reflected via multi-
sets over incomparable elements each corresponding to one constraint. For CH with m con-
straints we will denote by U = {u1, . . . , um} the set of elements which are pairwise incompa-
rable. The idea behind inclusion of multi-sets (instead of sets) into the proposal of local-SCSP
class lies in preserving of monotonicity of multiplicative operation.

As we include multi-sets into our consideration, maximum element 1 is replaced by a tu-
ple of empty multi-sets denoted by ~∅. Meaning and handling of ⊥ element remains un-
changed.

Locally-predicate-better comparator. Each semiring value corresponds to h-tuple ~A =
(A1, . . . , Ah) having Ai as a multi-set of elements from the set U , i.e.,A = (NU )h ∪ {⊥}.

Let us consider CH C = {c1, . . . , cm} and its constraint ci@l over variables (v1, . . . , vk).
Then ci corresponds to semiring constraint (def i, con i) such that coni ≡ (v1, . . . , vk) and

∀θ ≡ [v1 = d1, . . . , vk = dk] : def i(d1, . . . , dk) =




(∅
1
, . . . , ∅

l−1
, {ui}

l

, ∅
l+1

, . . . , ∅
h
) if θ � ¬ci

~∅ if θ � ci

Multiplicative operation corresponds to union of multi-sets extended to tuples (Eqn. 4.9).
Additive operation ~min� is a lexicographic extension of min� operation (as in Eqn 4.10 for
minlex ).
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Locally-metric-better comparator. Compared with predicate version of comparator, we
must consider the value of error function and compare it for individual constraints. Ele-
ments of multi-set have to be replaced by pair ru ≡ (r, u) ∈ N × U for e(cθ) ∈ N. As a result
we obtain semiring setA = (NN×U)h∪{⊥}. This change is reflected in the definition of semir-
ing constraint for which def i(d1, . . . , dk) = (∅, . . . , ∅, {e(ciθ)ui}, ∅, . . . , ∅) holds for θ � ¬ci.
Multiplicative operation again corresponds to union over tuples of multi-sets (Eqn. 4.9).

From these definitions we may derive that the following property

[(A1, . . . , Ah) ∈ A] ⇒ [∀i∀ru, r′u ∈ Ai : r = r′]

holds for each valid semiring value. This is influenced by the fact that each element u ∈ U
corresponds to one constraint which is always evaluated by the same value of error function
e(cθ) for given assignment θ. As we need to compare values of error function for individual
constraints we apply the following minimum operation for comparison of particular levels

[M = min�lex (M,M ′)] ≡ [M = min�(UM , UM ′) ∧ (∀ru ∈ M ∃r′u ∈ M ′ : r ≤ r′)] ,

where multiset US = {u | ru ∈ S} parametrized by S is such that card(u,US) = card(ru, S)
holds. Operation min�lex is extended to handle tuples (all levels) as above in Eqn. 4.10.

Let us note that this definition may be directly applied for locally-predicate-better com-
parator instead of simplified SCSP class from above paragraph.

Ordered-better comparator. SCSP class can be defined for ordered-better comparator with
help of hierarchy refinement (see Def. 4.14). For each CH C with weight function w, we
construct a new CH by the hierarchy refinement C/w. SCSP class for CH C/w with locally-
better comparator corresponds to SCSP class for CH C with ordered-better comparator due
to Theorem 4.3.

4.5.3 Regional Comparator

Regionally-better comparator enables comparison of assignments which are incomparable
by local comparator. Assignments may be incomparable up to some level and on this level
error functions of constraints are compared individually. This incomparability has to be
included into additive operation of c-semiring which is used to compare particular semiring
values (a ≤S b iff a + b = b). We will show that any additive operation including this kind of
incomparability wouldn’t be associative3. Due to this property we are not able to define CH
with regional comparator as a SCSP class.

We will show that any additive operation wouldn’t be associative by the following (neg-
ative) example. Let us consider constraint hierarchy C = C1 ∪ C2 = {c1, c2, c3} ∪ {c4, c5, c6}.
For assignment θ with values of error function e(ciθ) for i = 1 . . . 6, we will denote its satis-
faction degree E(Cθ) by (

e(c1θ) e(c2θ) e(c3θ)
e(c4θ) e(c5θ) e(c6θ)

)
Let us take three possible assignments α, β, γ of CH C with the following values of error
functions resulting in the following satisfaction degrees

E(Cα) =
(

0 0 1
0 1 1

)
−→ a E(Cβ) =

(
1 0 1
0 0 0

)
−→ b E(Cγ) =

(
0 1 0
0 0 1

)
−→ c

3Operation + is associative iff (a + b) + c = a + (b + c).
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each of them corresponding to semiring values a, b, c ∈ A, resp. Due to the definition of
regional comparator, α must have preferred semiring value than β (a + b = a) and at the
same time γ is better than α (a + c = c). As a conclusion we have (a + b) + c = a + c = c.
Similarly it is derived a+(b+c) = a+b = a because assignment β must have higher semiring
value than γ.[(

0 0 1
0 1 1

)
+

(
1 0 1
0 0 0

)]
+

(
0 1 0
0 0 1

)
=

(
0 1 0
0 0 1

)
[a + b] + c = c(

0 0 1
0 1 1

)
+

[(
1 0 1
0 0 0

)
+

(
0 1 0
0 0 1

)]
=

(
0 0 1
0 1 1

)
a + [b + c] = a

Summarizing it we obtain that associativity is not satisfied for this hierarchy and any c-
semiring for regionally-better comparator may not have associative additive operation. Be-
cause the associativity of + is one of its basic properties due to the Def. 3.36, no SCSP class
for CH with regionally-better comparator exists.

4.6 Categorization of Hierarchies over Finite Domains

We have defined SCSP classes for lexicographic-better comparator (lexicographic-SCSP) and
comparators dedicated to weighted-sum-better comparator (weighted-SCSP) and locally-
better comparators (local-SCSP), resp. For all defined classes multiplicative operation of
semiring is non-idempotent which associates these classes in relation with weighted CSPs.
We will show that lexicographic-better and weighted-sum-better comparators are equivalent
to weighted CSP wrt. polynomial transformation. CHs with local comparators belong to the
different class of problems as their semiring set is partially ordered. Local-SCSP class may be
transformed into weighted CSP via polynomial time refinement. However, opposite refine-
ment doesn’t exist due to partial ordering over set of CH’s assignments. Summarization of
all relationships between basic SCSP classes wrt. their properties (idempotency versus non-
idempotency of multiplicative semiring operation, total versus partial semiring ordering) is
shown in Fig. 4.1.

weighted-SCSP lexicographic-SCSP

polynomial time
refinement

possibilistic CSP

non-idempotent, total ordering

lexicographic CSP

local-SCSP

weighted CSP

idempotent, total ordering non-idempotent, partial ordering

Figure 4.1: Relationships between frameworks

Weighted-SCSP and lexicographic-SCSP classes may be defined as valued CSP classes
with help of direct relation between SCSP and VSCP described in Sect. 3.8.2. The only
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one difference between VCSP and SCSP consists in required total ordering for valuations
of VCSP. Because this property is not satisfied for local-SCSP class, we may not define VCSP
class for CH with any local comparator.

Weighted-SCSP

Weighted CSP is nothing but the first non-required level of CH with weighted-sum-better
comparator. A simple polynomial time refinement exists from CH with weighted-sum-better
comparator into the weighted CSP. Let us consider the highest value p among p1, . . . , ph

where each pi is the highest value on i-th position of all semiring values (a1, . . . , ah) in defi-
nition of any semiring constraint. Each semiring value (a1, . . . , ah) of any tuple that appears
in CH with weighted-sum-better comparator is transformed into a1p

(h−1) + · · ·+ah−1p+ah.
Semiring value ⊥ is transformed into +∞.

The transformations for the unsatisfied-count-better and least-squares-better are defined
in the same way as for the above mentioned weighted-sum-better comparator.

Lexicographic-SCSP

Lexicographic CSP corresponds to the first non-required level of CH with lexicographic-
better comparator. For the second part of equivalence, let us consider the highest possible
value p from multi-set

⊔
j Aj of all semiring values (A1, . . . , Ah) occurring in any definition

of semiring constraint. Then the desired transformation f of every semiring element ~A =
(A1, . . . , Ah) is given by

f( ~A) = (A′
1 t · · · tA′

h) such that ∀i A′
i = {a′ | (a′ = aph−i) ∧ (a ∈ Ai)}

Semiring value ⊥ of lexicographic-SCSP corresponds with its counterpart in lexicographic
CSP ⊥.

Local-SCSP

Local-SCSP class may be transformed into the problem which is strongly equivalent with
weighted CSP via polynomial time refinement. Let {u1, . . . , um} be a set of incomparable
elements U in local-SCSP with h levels. Let ni be the maximal number of occurence of pair
rui for any r in multi-set

⊔
j Aj in any semiring value ~A = (A1, . . . , Ah) of local-SCSP. Let

e define the highest value among all numbers r of any pair rui from multi-set
⊔

j Aj in any
semiring value ~A = (A1, . . . , Ah) occurring in definition of any semiring constraint in local-
SCSP. Then each semiring value ~A = (A1, . . . , Ah) may be transformed into a1p

(h−1) + · · ·+
ah−1p + ah where p =

∑m
i=1 nie and ai =

∑
ru∈Ai

[r × card(ru,Ai)]. In this case, an optimal
tuple of local-SCSP not only minimizes error function of individual constraint at each level,
but also, the weighted sum of violated constraints.

The opposite transformation doesn’t exist as an entailment of Corollary 3.7: local-SCSP
may not be defined as a refinement of lexicographic-SCSP because incomparable semiring
elements in local-SCSP must be incomparable in SCSP class for weighted CSP which semir-
ing set is totally ordered.



Chapter 5

Variables’ Annotations

Over-constrained problems are usually solved by giving some level of preference to indi-
vidual constraints [FW92, BFBW92, SFV95] or to each combination of values for every con-
straint [DFP96, BMR97b] and defining the solution using these preferences. Still not inves-
tigated possibility offers assigning preferences to variables, which seems to be interesting
for over-constrained problems or optimization problems with partially or even completely
ordered variables. Constraints with variables’ annotations is a constraint solving environ-
ment where preferences (or annotations) are assigned to individual variables instead of to
the constraints themselves [Rud98c, Rud98a, Rud99, RM99b]. Moreover, the annotations are
local to variable occurrences, i.e., any variable may have different annotations in different
constraints (in fact, even different occurrences in the same constraint are allowed).

Different levels of importance for particular variables may become interesting in areas
like temporal scheduling where time of events are classified, e.g., by participant’s interest, in
job scheduling to influence an order of job via job owner’s priority, or in placement problems
where a better placement of an object depends on its properties.

The most prominent example is the timetabling problem. The problem is stated in vari-
ables which represent teachers (dean, professors, assistants...), rooms (more and less occu-
pied) and different groups of students. All these variables have their own preferences, which
could be applied directly helping to find appropriate solution.

Let us consider job-shop scheduling problem [Bru98]. Such problem is represented by
tasks to be completed and resources to be used by particular tasks. There annotations
may represent preferences over particular tasks or resources derived from their importance
within the problem.

Other example is the problem of the search for the optimal sequence of aircraft depar-
tures from a runway. Because practically all the constraints are safety regulations, we can
only change aircraft allocation to different time slots. In an over-constrained situation the
only allowed action is the removal of an aircraft from further consideration. We can as-
sign preferences to individual variables (planes) and define such a comparator which simply
abandons the aircraft with the smallest preferences.

Example 5.1 The small timetabling example illustrates a possible interpretation of variables’
annotations in constraints over natural numbers. Also, we show by this example that assign-
ing preferences to variables could be more natural than defining preferences for constraints.
There is a lecture L and its associated practice P. The practice should be preferably taught
at least one day after the lecture. We would like to express by the following constraint that

51
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the scheduling of lecture (taught by a professor) is more important than scheduling (time
placement) of the practice (taught by an assistant).

L@strong + 1 #=< P@medium % c1

There are two weaker constraints: the lecture has to be taught on Thursday or Friday and
the practice anytime between Monday and Thursday:

L@weak in 4..5 % c2
P@weak in 1..4 % c3

These constraints form a kind of hierarchy: the constraint c1 with the highest preferences
must be satisfied first and then we may try to satisfy constraints c2 and c3. It is possible to
satisfy c1 but not c2 and c3 taken together. The constraint c2 influences the variable with
higher annotations (look at c1), so this constraint is also satisfied. Then, trying to minimize
the overall constraint violation, we get (a kind of) optimal solution L=4, P=5 . By classical
hierarchy (see Chapter 4) where c1 is annotated by strong or medium, the solution L=3,
P=4 is also obtained. But this solution is not optimal from our point of view. The different
requirements towards the lecture and practice must be stated by assigning different prefer-
ences to c2 and c3 and so these constraints must be ordered. But this could be wrong with
respect to other constraints in a more complex problem. Also, the exact location of the two
appropriate constraints need not be easy to find in this context. Assuming we are not satis-
fied with the solution found and would like to reformulate constraints in such a way as to
reflect more precisely our expectations, it is easier to change values of variables’ annotations
than to find constraints whose preference changes will lead to better solution.

5.1 Annotation Triple

Definition 5.1 Combining function
⊕

on a set A is a function defined on each finite tuple of
values from A such that the value of combining function on tuple (a1, . . . , an) is independent
on permutation of values in this tuple, i.e.,

∀i1, . . . , in ∈ {1, . . . , n} such that
∀k, l ∈ {1, . . . , n} : ik 6= il for k 6= l
⇒ ⊕

(a1, . . . , an) =
⊕

(ai1 , . . . , ain) .

Because of allowed permutation of values in tuple (a1, . . . , an) we may denote an expression⊕
(ai1 , . . . , ain) also by

n⊕
i=1

ai.

Let us note that combining function may not be defined only on a subset of set A instead
of on a tuple (a1, . . . , an) of values from the set A because we don’t require pairwise different
values ai.

We should also remark that
⊕

may be easily defined as an extension of a commuta-
tive and associative closed binary operation + on S. Examples of combining functions are
arithmetic average or n-ary sum

∑
which is an extension of binary operation +.

Definition 5.2 (structure) Annotation triple is defined by (A,�,
⊕

), where

• A is a set denoted as annotation set with elements a ∈ A called annotations;
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• � is an ordering on A denoted as annotation ordering;

• ⊕
is a combining function on A.

For elements a, b ∈ A, we say that annotation a is more preferred annotation than b if proposi-
tion a � b holds. The most preferred annotation will be denoted 0, the least preferred 1. For
ai ∈ A, we say

⊕
combines annotations ai.

Definition 5.3 (problem) Constraint system with (variables’) annotations PA is composed from
(V,D,C, (A,�,

⊕
), a), where

• V = {v1, . . . , vn} is the set of variables;

• D = {D1, . . . ,Dn} is the set of domains. Each domain is a finite set containing the
possible values for the corresponding variable;

• C = {c1, . . . , cn} is the set of constraints. A constraint ci is a relation defined on a
subset {vi1 , . . . , viki

} of all the variables, that is {Di1 × · · · ×Diki
} ⊇ ci;

• (A,�,
⊕

) is the annotation triple;

• a : C × V → A is a function which determines the annotation of variable in constraint,
we call such annotation variable annotation, i.e., annotation of variable is local to a con-
straint.

Set of variables in constraint c will be referenced by Vc as usually.

Definition 5.4 Assignment is a function θ defined from set of variables to the domains of
variables θ : V → D. ΘV denotes set of all possible assignments of variables in V .

Local variable’s annotations are used for computing several characteristics of underlying
constraint system, the so called global annotations.

Definition 5.5 Global variable annotation combines variable’s annotations in all constraints
where this variable occurs.

av : V → A , av(v) =
⊕

(c∈C)∧(v∈Vc)

a(c, v)

Definition 5.6 Constraint annotation combines variable’s annotations of all variables in con-
straint.

ac : C → A , ac(c) =
⊕
v∈Vc

a(c, v)

Definition 5.7 Global constraint annotation combines global variable annotations of all vari-
ables in constraint.

acv : C → A , acv(c) =
⊕
v∈Vc

av(v)
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5.1.1 Instances of Annotation Triple

Let us consider representatives of annotation triple (A,�,
⊕

). First two instances are con-
centrated on weighted approach to annotations.

• Asum = (N,≥N,+)

• Avect = (Nk,≥lex,+vect)

– fixed k ∈ N
– ≥lex is standard lexicographic ordering

– +vect is standard vector sum

– a(c, v) = (0, . . . , 0, w, 0, . . . , 0) where w ∈ N

While Asum allows only one level of weighted annotations, Avect as its generalization con-
siders k weighted levels of preferences.

Aavg and Agavg select the variable with the highest average annotation.

• Aavg = (〈0, 1〉 ⊆ R,≥R, arithmetic average)

• Agavg = (〈0, 1〉 ⊆ R,≥R, geometric average)

Choice of another “non-average” operation is suitable for combination of annotations when
the dependency on the number of variables wouldn’t be overestimated.

A selection of arbitrary closed interval in Aavg and Agavg does not change ordering of
computed global annotations. Also the selected ≥ ordering is dual to the ordering ≤. How-
ever, arithmetic and geometric average are not interchangeable with respect to the proposi-
tion

(
a + b

2
≤ c + d

2
) 6⇔ (

√
ab ≤

√
cd) .

Example 5.2 Let us consider a = b = 0.5 and c = 0.2 with d = 0.9. Then following inequali-
ties hold

(0.5 + 0.5)/2 ≤ (0.2 + 0.9)/2 ,
√

0.2 × 0.9 ≤ √
0.5× 0.5 .

5.1.2 Solution

Annotations will be applied for computing solution in over-constrained and optimization
problems. Different methods for selection of solution from the set of all assignments will re-
flect possible semantics of variables’ annotations. Annotations will define variable ordering
in constraint satisfaction problems with preferences and in optimization problems. Map-
pings of annotations to the fuzzy CSP (see Sect. 3.4) and to the constraint hierarchies (in
Chapter 4) are aimed to solve over-constrained problems based on specific classical frame-
works.
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5.2 Fuzzy Annotations

Fuzzy annotations express importance of variables via fuzzy membership degree [DP93,
MG81]. Annotations of variables are combined to compute global constraint annotations
defining preferences for selection a solution via min-max optimization. This basic view on
annotations allows construction of corresponding fuzzy CSP or in a simpler case a possi-
bilistic CSP which qualifies a complexity of possible solution methods (see Sect. 3.8.3).

Definition 5.8 (class) Constraint system with fuzzy annotations PAπ is a constraint system with
annotations defined by tuple (V,D,C,AR, a) having AR = (〈0, 1〉 ⊆ R,≥R,

⊕
R
) where

⊕
R

is a combining function defined over real numbers.

Selection of interval, its ordering, and decision for combining function over real numbers
will be discussed in the next part which is intended to the define a solution of PAπ.

An error function indicates how the given constraint is satisfied by some assignment θ ∈
ΘV . Its definition together with the notion of metric and trivial error function may be taken
from Def. 4.4 and the accompanied description.

Definition 5.9 (satisfaction degree) Error of constraint set C wrt. assignment θ ∈ ΘV is
a function defined by

E(Cθ) = max
c∈C

acv(c)e(cθ)

where acv is a global constraint annotation and e is an error function such that e(cα) ≤ 1
holds for all c ∈ C and α ∈ ΘV .

Definition 5.10 (solution) Solution of constraint system with fuzzy annotations PAπ = (V,D,C,
AR, a) is each assignment θ ∈ ΘV with minimal error of constraint set C , i.e.,

E(Cθ) = min
δ∈ΘV

E(Cδ) .

Now we are able to discuss selection of annotation triple. Ordering ≥R was chosen due
to the usual interpretation of error function e(cθ) which is applied for computing solution
together with annotations: the more important annotation is, the more an error of constraint
is multiplied. Interval 〈0, 1〉was selected due to the fact that membership degree is expressed
with help of unit interval usually. Wrt. min-max behavior of the problem solution, we
will prefer combining function as an “average” operation rather than over-estimation of
the number of variables because sufficient number of even very non-important annotations
could be able outweigh even very important annotation.

Example 5.3 Let us consider that the Example 5.1 is solved with trivial error function and
arithmetic average as combining function.

L@0.9 + 1 #=< P@0.6 % c1
L@0.3 in 4..5 % c2
P@0.3 in 1..4 % c3

Global variable annotations necessary for computing global constraint annotations are

av(L) =
0.9 + 0.3

2
= 0.6 , av(P) =

0.6 + 0.3
2

= 0.45 .
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Global constraint annotations represent the weight of constraint

acv(c1 ) =
av(L) + av(P)

2
= 0.525, acv(c2 ) = av(L) = 0.6, acv(c3 ) = av(P) = 0.45 .

As a result we obtain solution θ = {(L, 4), (P, 5)} with unsatisfied constraint c3 and error

E(Cθ) = min(acv(c1 )× e(c1θ), acv(c2 )× e(c2 θ), acv(c3 )× e(c3θ)) =
= max(0.525 × 0, 0.6× 0, 0.45 × 1) = 0.45 .

Preferences for the trivial error function e(cθ) are expressed only by the global constraint
annotation. When the metric error function is used the situation is very different. Then, the
preferences of constraints are changed with respect to the chosen assignment θ and a suffi-
ciently large value of error function can change the solution drastically. This combination of
the metric error function and global constraint annotation can be used only when the metric
error function is normalized as required in Def. 5.10.

Example 5.3 (continuation) If a metric error function would be applied to this problem,
a normalization of domain D = {1, . . . , ‖days‖} has to be done to obtain metric space with
suitable distance function, i.e.,

∀d1, d2 ∈ D e(d1 = d2) = abs(d1 − d2)/‖days‖ .

In this example, a solution with such metric comparator is the same as above.

Even if the above example returns the same solution for both metric and trivial com-
parators, an important difference may be seen between these approaches. The metric error
function should be used when the decrease of large values of the error function is desirable.
The trivial error function is advantageous when the meaning of annotations does not rely on
the shape of the error function so the size of error (any different from zero) is not important.

Example 5.4 Let us consider the example with constraints C = {c1, c2} and two assignments
θ0, θ1, and describe the selection of a better assignment with a metric comparator. We sup-
pose global constraint annotations:

acv(c1) = 0.9, acv(c2) = 0.1

and value for error function (in this case, the normalization is done by division by maximal
expectable value of the error function):

e(c1θ0) = 0/100 , e(c2θ0) = 10/100 ,

e(c1θ1) = 1/100 , e(c2θ1) = 9/100 .

The errors E(Cθi) for both assignments are

E(Cθ0) = max{acv(c1)× e(c1θ0), acv(c2)× e(c2θ0)} =
max{0.9 × 0, 0.1× 0.1} = 0.01 ,

E(Cθ1) = max{acv(c1)× e(c1θ1), acv(c2)× e(c2θ1)} =
max{0.9 × 0.01, 0.1× 0.09} = 0.009
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and the better assignment is θ1 with minimal error 0.009. This assignment violates the con-
straint c1 with the highest global constraint’s annotation but the large value of e(c2θ0) causes
this selection. But the trivial comparator selects as a solution the assignment θ0, because the
assignment θ0 does not violate the strong constraint c1 and the combination with a value of
the error function is trivial.

5.2.1 Mappings

The following theorems relate constraint system with fuzzy annotations with possibilistic
CSP (see Sect. 3.3) and fuzzy CSP (described in Sect. 3.4).

Theorem 5.1 (possibilistic CSP) Let us consider a constraint system with fuzzy annotations
PAπ = (V,D,C,AR, a). We define possibilistic CSP Pπ as a triple (V,D,CA) where CA =
{(c, acv(c)) | c ∈ C} is a set of necessity-valued constraints having preference degrees equal
to global constraint annotation. Then θ ∈ ΘV is an optimal assignment of Pπ iff θ is a solution
of PAπ with trivial error function and E(Cθ) corresponds to inconsistency degree of Pπ .

Proof: Set S of optimal assignments in possibilistic CSP Pπ corresponds to assignments se-
lected by

minθ∈ΘV
max((ci,acv(ci))∈CA)∧(θ�¬ci)(acv(ci), 0) .

Because the value of trivial error function e(cθ) is equal 0 for all satisfied constraints and 1
for any violated constraint, we may rewrite it into

minθ∈ΘV
max(ci,acv(ci))∈CA acv(ci)e(ciθ)

which defines exactly the set of all solutions in PAπ . At the same time we have computed
that error of any solution in PAπ is equal to the inconsistency degree of Pπ . �

Possibilistic constraint satisfaction was applied to describe behavior of fuzzy annotation
with trivial error function. The metric error function associates a preference to each tuple of
values for constraint which may be easily modeled with help of fuzzy constraint satisfaction.

Theorem 5.2 (fuzzy CSP) Let PAπ = (V,D,C,AR, a) be a constraint system with fuzzy an-
notations having C = {c1, . . . , cm}. We will define fuzzy CSP Pµ as a triple (V,D,CA)
where CA = {cA1, . . . , cAm} is a set of fuzzy constraints. Each fuzzy constraint cAi is de-
fined over the same set of variables as ci, i.e., {vi1 , . . . , vik}. Its fuzzy relation is given by
µcAi

(di1 , . . . , dik) = 1− e(ci(di1 , . . . , dik))×acv(ci) where all dij are possible values from do-
main of corresponding variable vij . Then θ ∈ ΘV is a solution of Pµ computed by conjunctive
combination iff θ is a solution of PAπ and E(Cθ) corresponds to inconsistency degree of Pµ.

Proof: Set of solutions in Pµ corresponds to tuples selected by

max
(d1,... ,dn)∈Dn

min
cAi∈CA

µci(d1, . . . , dn) ↓V
(vi1

,... ,vik
)= max

θ∈ΘV

min
ci∈C

(
1− e(ciθ)× acv(ci)

)
=

= max
θ∈ΘV

(
1−max

ci∈C

(
e(ciθ))× acv(ci)

))
= 1− min

θ∈ΘV

max
ci∈C

(
e(ciθ)× acv(ci)

)
.

Set of assignments selected by minθ∈ΘV
maxci∈CA

(
e(ciθ)× acv(ci)

)
corresponds to the set of

solution in PAπ. We also see that consistency degree of Pµ is the complement to E(Cθ), i.e.,
desired relation for inconsistency degree was also derived. �
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5.3 Hierarchical Annotations

An opposite view of annotations compared with fuzzy approach demonstrates their inter-
pretation through constraint hierarchies (for details about constraint hierarchies see Chap-
ter 4). Basically such hierarchy will be constructed over constraint annotations, with addi-
tional order imposed by global constraint annotations within each level. Because hierarchical
annotations applies variables’ annotations in a more extended way than fuzzy annotations
they are able to catch semantics of annotations more extensively. However, we need to take
into account a more complete solution strategy than for fuzzy annotations wrt. shown cor-
respondences of particular annotations with fuzzy CSP and later with constraint hierarchies
(see Sect. 3.8.3 and 4.6).

Definition 5.11 (class) Constraint system with hierarchical annotations PAH is a constraint sys-
tem with annotations defined by tuple (V,D,C,AR, a) having AR = (〈0, 1〉 ⊆ R,≥R,

⊕
R
)

where
⊕

R
is a combining function defined over real numbers.

The reasons for such selection of annotations are basically the same as those discussed for
fuzzy annotations in Sect. 5.2. Combining function

⊕
R

should be again replaced by “aver-
age” operation which influence selection of annotation set towards an interval of real num-
bers. Due to the generality of unit interval as a typical representative of closed continuous
domain, we have restricted ourself to this selection. Annotation set could be also defined
by any other closed interval 〈0, r〉, r ∈ R of real numbers having r as the most important
annotation. The least important annotation has to correspond to 0 due to later combination
of the annotations with error function as above for fuzzy annotations.

Definition 5.12 (ACH) Let us consider PAH = (V,D,C,AR, a) and split the set of constraints
C into a union of disjoint sets Ci such that constraints having more important constraint
annotations ac are contained in a set with the smaller index i, i.e.,

c, d ∈ C : ac(c) ≥R ac(d) ≡ (c ∈ Ci) ∧ (d ∈ Cj) ∧ (i ≤ j) .

Annotated constraint hierarchy (ACH) is such division of the constraint set C that C =
C0 ∪ C1 ∪ . . . ∪ Cn holds and sets Cj are empty for all j > n, all sets Ck for k ∈ 1 . . . n are
non-empty, and C0 denotes the set {c ∈ C | ac(c) =R 1}. Particular sets Ci will be called levels
of constraints in ACH.

From the definition of ACH follows that levels with smaller indices contain constraints with
higher and more important constraint annotations. Such level with smaller index will be
called more important than another level having a higher index.

In order to evaluate each assignment by its satisfaction degree, we will check satisfaction
of each constraint with help of error functions (trivial or metric) applied for fuzzy annotations
in Sect. 5.2 and defined by Def. 4.4. Within this framework, error of each constraint combined
together with global constraints annotation was a source for computing error of overall con-
straint set giving us the satisfaction degree of each assignment. Here we will define an error
of constraint set as a general function to be further applied on every level of constraints in
ACH separately.

Definition 5.13 Let us consider PAH = (V,D,C,AR, a). An error of constraint set C′ ⊆ C wrt.
assignment θ ∈ ΘV is defined by function E : 2C ×ΘV → W where W is ordered by partial
ordering ≤W . For each C ′, the set W contains a minimal element 0C′ .
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The smaller elements of W correspond to the less important errors. Minimal element 0C′

will express that all constraints in C ′ are satisfied. Usually the one common minimal element
exists for all sets C ′. However, different minimal elements may exist (e.g., 0C′ depends on
the number of constraints in C ′). An example of W could be a set of real positive numbers
R+ with minimal element corresponding to 0.

Definition 5.14 (satisfaction degree, solution) Having constraint system with hierarchical
annotations PAH = (V,D,C,AR, a) and corresponding ACH C = C0 ∪C1 ∪ . . .∪Cn, an error
of ACH wrt. assignment θ is a tuple [E(C1θ), . . . , E(Cnθ)]. This tuple will be denoted by
E(Cθ).

A solution of constraint system with hierarchical annotations PAH is such assignment θ that
E(C0θ) = 0C0 holds and the error E(Cθ) is minimal wrt. lexicographic ordering, i.e.,

∀δ ∈ ΘV ∃k such that ∀i < k : [E(Ciθ) ≤W E(Ciδ)] ∧ [E(Ckθ) <W E(Ckδ)]

Requirement on the best possible satisfaction of level C0 is intended to express requirement
of complete satisfaction of constraints in C0 (∀c ∈ C0 : θ � c) . Having such definition of
solution, we can see that error of assignments are compared by error of their levels from the
most to the less important level. Smaller error on any more important level is able to deter-
mine selection of better assignment independently on the value of error on less important
levels.

We have defined error of constraint set as a general function E : 2C × ΘV → W . Let
us introduce possible instances of this error for W = R+ with standard ordering over real
numbers having minimum element equal to 0

weighted-sum error: E(C ′θ)=
∑
c∈C′

acv(c) e(cθ) (5.1)

worst-case error: E(C ′θ)=max
c∈C′

acv(c) e(cθ) (5.2)

least-squares error: E(C′θ)=
∑
c∈C′

acv(c) e(cθ)2 (5.3)

where C ′ ⊆ C and θ ∈ ΘV hold.

Example 5.5 Let us take constraint system with hierarchical annotations and arithmetic av-
erage as a combining function given by constraints from Example 5.3. We will show how to
define its annotated constraint hierarchy and find its solution via weighted-sum error and
trivial error function. Constraint annotations are

ac(c1) = a(c1,L)+a(c1,P)
2 = 0.75 ,

ac(c2) = a(c2, L) = 0.3 , ac(c3) = a(c3, P) = 0.3 .

As a consequence we obtain an ACH C = C1 ∪C2 = {c1} ∪ {c2, c3}. Global variable annota-
tions and global constraint annotations have the same values as in Example 5.3. Constraint
c1 from the first level can be satisfied but c2 and c3 taken together can not. With respect to
the smaller weight of c3, we get solution θ={[L, 4], [P, 5]} with error

E(Cθ) = [0, (acv(c2)× e(c2 θ) + acv(c3)× e(c3 θ))] =
[0, (0.6 × 0 + 0.45 × 1)] = [0, 0.45] .
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Let us consider a change in annotation of variable P in c3 to 0.6. Three levels of hierarchy
C = [{c1}, {c3}, {c2}] arise as a consequence of ac(c3) increase. The values av(P) = 0.6 and
acv(c3) = 0.6 increase, too. Final solution θ = {[L, 3], [P, 4]} has error E(Cθ) .= [0, 0, 0.6].
This value of error reflects that we violate a more important constraint than in the example
above.

Other possibility can be introduced by comparison of individual errors for particular con-
straints again with help of global constraint annotations acv . The so called local error will be
defined by tuple of pairs (acv(c), e(cθ))

E(C ′θ) = [(acv (c1), e(c1θ)), . . . , (acv(ck), e(ckθ))] for C ′ = {c1, . . . , ck} ⊆ C (5.4)

where constraints in C ′ are taken in any fixed order. Now let us define ordering < l over local
errors of constraint sets which has to be proposed to define solution of PAH via local errors
(see Def. 5.14).

[(a1, e1), . . . , (ak, ek)] <l [(a′1, e
′
1), . . . , (a′k, e

′
k)] ≡

(∃i : ei < e′i) ∧ (∀j : aj ≥R a′j ⇒ ej ≤ e′j) (5.5)

For constraint set C ′ = {c1, . . . , ck} with global constraint annotations acv(c1), . . . , acv (ck),
a minimal element of ordering <l correspond to such tuple that second element of each pair
(acv(ci), e(ciθ)) is equal to 0, i.e., all constraints in C ′ are satisfied by assignment θ. Values
of global constraint annotations are unique in PAH , i.e., only one minimal element exists for
each constraint set C ′.

5.3.1 Mappings

In a similar way we have related fuzzy annotations with fuzzy CSP we would like to define
correspondence between hierarchical annotations and constraint hierarchies (see Chapter 4).

Theorem 5.3 (constraint hierarchy) Let PAH = (V,D,C,AR, a) be a constraint system with
hierarchical annotations and

⋃n
i=1 C its ACH. We define CH PCH as a triple (V,D,

⋃n
i=1 C).

Then θ ∈ ΘV is a solution of PAH with weighted-sum error (or one of the following errors:
worst-case, least-squares, local) iff θ is a solution of PCH with weighted-sum-better (or worst-
case-better, least-squares-better, ordered-better, resp.) comparator where acv(c) is taken as
a weight for any constraint c.

Proof: First let us consider correspondence with global comparators of CHs. Any solution of
PAH must satisfy all constraints in C0 and minimizes error E(Cθ) by subsequent comparison
of E(Ciθ) from the smallest to the highest index i (see Def. 5.14). The same minimization
performs globally-better comparator of CHs (see Def. 4.9) comparing values g(Ci, θ) sub-
sequently. As the values E(Ciθ) and g(Ci, θ) are defined by particular errors of PAH and
comparators of PCH by the same expressions, we obtain the same set of solutions for both
problems PAH and PCH .

Ordered-better comparator takes into account subsequent levels of CH PCH like errors
E of PAH are compared from the smallest to the highest index of these tuples. If the values
e(cθ) and e(cδ) are equal for all c ∈ Ci neither error of PAH nor ordered-better comparator
of PCH doesn’t differ which of assignments θ and δ is better. Let us consider the first level j
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where error function e is different for assignments θ and δ. Then θ is ordered-better than δ
if c ∈ Cj exists such that e(cθ) < e(cδ) holds, and if acv(c) ≥R acv(d) holds for some d ∈ Cj

then e(dθ) ≤ e(dδ) is entailed. However, this comparison corresponds to the ordering < l

defined by Eqn. 5.5. As a consequence we obtain that the selection of better assignments is
the same for both ACH given by PAH and CH PCH , i.e., they have the same set of solutions.

�
Within the section 4.4, we have proposed an algorithm for solving CH with ordered-

better comparator. As the solutions of CH with this comparator correspond to solutions of
ACH with local error, we may apply it on ACH to compute solution of underlying problem
with annotations. This algorithm solving constraint system with variables’ annotations via
local error was implemented in SICStus Prolog [COC97, Int00] with attributed variables and
mutable terms [Rud98c].

5.4 Variable Ordering

Variable ordering (VO) heuristics in CSPs tend to select those variables which are the most
critical ones to be first instantiated (see Sect. 2.3). Our idea is to consider as the most critical
ones exactly those variables of CSPs with preferences which are the most important.

By an early instantiation of more important variables it may be easier to assign them the
more acceptable values as it is shown in the following example.

Example 5.6 Let us consider a binary CSP (for definition see Sect. 2.1) with unary constraints
on all variables as soft constraints having associated a cost for each value in the domain of
variable and with set of hard binary constraints. If we apply trivial value ordering heuris-
tics selecting values in order given by costs of unary constraints then the more important
variables would have a better possibility to be instantiated on values having higher cost.

Such preferences of variables (variables’ annotations) may be able to express user’s prefer-
ences like the earlier approaches together with his/her expectations about difficulty of variable’s
assignments (e.g., variable occurence corresponds to an activity asking a scarce resource, or-
der of job expressed by variable is highly synchronized with other jobs, placement of an ob-
ject is strongly constrained wrt. some of its coordinates — variables) and they are applied
to overcome difficulties given by solving over-constrained problems or problems with large
solution spaces. The most difficult variables would become a source of constraint propaga-
tion and their early instantiation may prune the solution space or avoid unsuccessful search
bathes, both at the beginning and during the search.

Example 5.7 Let us imagine a simple constraint expressing that one place (T1) should be
visited before the another (T2). An agent responsible for many places should attend the first
place while the second place should be attended by an agent with much lower load. This
relation may express the following constraint with annotations.

T1@strong < T2@weak

The annotation strong becomes a source of early instantiation of the variable T1. If it
occurs, the constraint is satisfied and a reduction of domain of T2 is less critical than would
be a reduction for the variable T1 wrt. stronger requirement on T1.
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The first place may be accommodated by a more important customer than the second
place. Annotations in the above constraint express such degree of importance. They become
very interesting when considered together with preferential constraints for value ordering
(e.g., each customer prefers certain hours of day to be visited by an agent). Any later instan-
tiation of place visiting time would probably worse cost of value selected from domain of
variable. This in general is not a problem (backtracking etc. would overcome this), but the
efficiency is completely different (not only in practice, but even theoretical complexity may
differ).

5.4.1 Computing Variable Ordering

Static Variable Ordering. Having a constraint system with variables’ annotations PA =
(V,D,C,(A,�,

⊕
), a), variable ordering will be computed via global variable annotation av .

This VO belongs to a class of static VOs. Final computing VO depends on selection of one
of annotation triples Asum , Aavg , Agavg , or Avect . Instantiation of this triple should consider
properties of given problem. If it is desirable to strictly differ among particular variables then
taking into account level by level assignment via Avect would be the best choice. Selection
between average Aavg , Agavg and additive Asum triples is related with possible overestima-
tion of the number of variables as discussed in Sect. 5.1.1.

As a constraint with annotations due to Asum , Aavg , or Agavg instances inequality T1@10
< T2@1from Example 5.7 may be considered having symbolic names replaced by corre-
sponding numbers. The following example is concentrated on application of Avect triple.

Example 5.8 Let us expect that we have several sets Si of tasks each of them requiring a re-
source. Ideally each task is assigned to a different resource but such assignment may not
be feasible (e.g., wrt. the number of resources). Any task from set S i should get a distinct
resource preferably than another task from set Sj such that j > i. Such requirements may be
expressed by the following soft constraint with annotations from Avect .

different_times( s11@(1,0,...,0), ..., s1n1@(1,0,...,0),
s21@(0,1,...,0), ..., s2n2@(0,1,...,0), ...
sm1@(0,0,...,1), ..., smnm@(0,0,...,1)) ,

where Si = {si1, . . . , sini} for i = 1 . . . m.
Now let us imagine that each task sij has also associated a cost wij expressing preferences

among tasks of the same set Si. Such requirement would be solved by replacement of the
value 1 by wij in annotation of variable for task sij .

Let us consider a semantics of such constraint. Annotations of tasks influence variable
ordering, tasks having more important annotations would be preferably assigned first. As
early as it occurs some distinct resource remains still free.

Dynamic Variable Ordering. We would like to reflect by annotations also a dynamic be-
havior of constraint system during evaluation, i.e., domain variables are transformed to con-
stants due to their value assignments, constraints become passive due to their satisfaction,
they may be removed in over-constrained problems wrt. their relaxation. To take this consid-
eration into account, we select a variable to be assigned via dynamic global variable annotation
which corresponds to global variable annotation computed after applying current partial as-
signment.
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Before presenting a definition let us shortly mention how sets Cθ, Vθ differ from sets C ,
V for some partial assignment θ ∈ ΘW ,W ⊆ V . The set Vθ is a subset of the original set V
including only those variables which does not have assigned their values by partial assign-
ment θ. For the set Cθ = {cθ | c ∈ C} holds. Some constraints cθ represent empty relation
only as their set of variables Vθcθ becomes empty. Other constraints cθ have reduced their set
of variables by the already assigned variables Vθcθ = Vc − (W ∩ Vc). Due to constraint prop-
agation, particular relations for constraints cθ contain possibly smaller number of elements
than corresponding c after applying tuple projection (see Def. 3.18) on remaining variables
in cθ, i.e., we have cθ ⊆ c ↓Vc

Vθcθ
.

Definition 5.15 Let us consider PA = (V,D,C,(A,�,
⊕

), a) and some partial assignment
θ ∈ ΘW , i.e., W ⊆ V holds. Dynamic global variable annotation davW combines variable’s
annotations in all constraints Cθ where variables from the set Vθ = V −W occurs.

davW : [V −W ]×ΘW → A , dav(v, θ) =
⊕

(c∈Cθ)∧(v∈Vθcθ)

a(c, v)

Such dynamic global variable annotation allows ordering of all remaining (unassigned)
variables. The next variable v ∈ Vθ to be assigned is such that its dynamic global variable
annotation is the most important (or, more exactly, no variable having its dav more important
exists), i.e., ∀v′ ∈ Vθ : dav(v, θ) � dav(v′, θ) holds.
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Chapter 6

Timetabling

Educational, transport, sport, or employee timetabling are just examples of problems cov-
ered by the timetabling research area. Timetabling determines what time and place each
course/exam will be given; when train/bus/aeroplane will depart/arrive and from which
station/airport; what time, date, and place each match will be played; or designs each em-
ployee’s work timetable. Anthony Wren [Wre96] defines timetabling as a special case of
scheduling:

Timetabling is the allocation, subject to constraints, of given resources to objects being
placed in space-time, in such a way as to satisfy as nearly as possible a set of desirable
objectives.

An intent of this thesis is to study educational course timetabling with special emphasis to
university-based timetabling as a classical application area where various types of prefer-
ences need to be involved to obtain some acceptable solution.

Timetabling problems may be solved by different methods inherited from operational re-
search such as graph coloring and mathematical programming, from local search procedures
such as tabu search and simulated annealing, or from genetic algorithms. Our concentration
will be devoted to constraint programming approach, references including also other so-
lution methods may be found in surveys on educational timetabling [Sch95, CL98a] or in
proceedings from the timetabling conference PATAT [BR96, BC98, BE00].

6.1 Problem Description

Course timetabling can be viewed as a multi-dimensional assignment problem in which stu-
dents and teachers are assigned to courses, course sections, classes, or exams, and those
meetings between teachers and students are assigned to classrooms and times. Let us de-
scribe particular components.

Course is taught one or more times a week during part of a year. Sometimes courses are split
to multiple course sections due to the large number of students subscribed to a course.

Teacher is assigned to each course or course section.

Classroom of suitable size, equipment (laboratory, computer room, classroom with data
projector, etc.), and location (part of building, building, campus, etc.) has to be assigned
to each course or course section.

65
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Student attends a set of courses. His/her selection is usually predefined by subscription
either in a class taking an identical set of courses (usually at high schools) or in some
program containing compulsory and optional courses (universities). In some univer-
sities, students are also allowed to subscribe almost any arbitrary selection of courses
within course pre-enrollment process.

The timetabling problem consists of set of different tasks which differ with respect to
each school. Common properties depends on a type of school. High and secondary schools
create their timetables for classes with a small number of free choices for students, teachers
and students are busy all day, classrooms have the same location and the timetable has to
be created without any conflicts. Universities allow more choices for individual students,
the programs are loosely structured, teachers with smaller number of teaching units are
more flexible resource, classrooms have different size, equipment, and location, and result-
ing timetable is generated with minimal overlaps of courses having common students. High
school timetabling problem is usually very tight, the complexity of university timetables
worsens optimization requirement.

The sequence of particular tasks (e.g., time assignment or classroom allocation) or their
interleaved solution depends on the complexity and tightness of the problem, decision cri-
teria with their required sub-optimal or optimal satisfaction. High and secondary schools
usually need to consider teacher and class-teacher assignment sub-problems only. At uni-
versities, we may describe two basic schemas distinguished by the sequence of tasks.

Master timetabling
1. Determination of number of sections
2. Teacher assignment
3. Time (and classroom) assignment
4. Student enrollment for courses wrt. published timetables
5. Student scheduling
6. Incremental changes of constructed timetable

Demand-driven timetabling
1. Student enrollment for courses
2. Determination of number of sections
3. Teacher assignment
4. Time (and classroom) assignment
5. Student scheduling
6. Incremental changes of constructed timetable

Let us study particular sub-problems which has to be solved via such automated timetabling,
i.e., time assignment, classroom allocation, and student scheduling. We will also discuss
possible inclusion of teacher assignment into the problem structure.

6.1.1 Time Assignment

Each course or course section must be scheduled during some time period, e.g., week. In
high and secondary school, the problem is usually called class-teacher timetabling [CL98a]
with course understood as a class-teacher meeting. Class-teacher meetings are scheduled
without creating conflicts and satisfying some side constraints on the spread and sequenc-
ing of courses. While the high school timetabling schedules contiguous blocks of courses
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for particular classes, university timetabling allows more loosed timetables (even during
evenings) for particular groups of students having the same program. University-structured
programs include significant number of optional courses which are scheduled to satisfy dif-
ferent student requirements to the largest possible extent. Student-oriented timetables are
required at universities where open credit system with just few strict requirements plays
substantial role. Such timetables for individual students solve the problem of maximal par-
ticipant satisfaction [SFW95].

The complexity of time assignment problems influences required time model. The sim-
plified version considers only courses of fixed duration starting in non-overlapping time
slices but the realistic model should include variable duration of courses at least. Increase
of the solution space brings shorter time slots than possible duration of course, e.g., courses
with duration from one to four hours starting each quarter of an hour; or different time slices
for particular administrative units (faculty, department).

Let us present basic type of constraints which are often considered when the time assign-
ment sub-problem is taken into account.

(C1.1) Consistency constraints: each teacher can only give one course at a time and each
classroom can only host one course at a time.

(C1.2) Student time constraints: induced by school organization of teaching into class-
teacher meetings, programs, or student-oriented meetings.

(C1.3) Teacher time constraints: requirements and preferences of teachers towards their
courses.

(C1.4) General time constraints: time preferences or requirements (e.g., restrained or pre-
ferred time slices, maximal number of time slices per teacher per day)

6.1.2 Classroom Allocation

Classroom assignment plays substantial role at universities with classrooms of different
size, equipment, and location. Courses should be scheduled into classrooms whose size
is large enough (but not too large) to contain them. Special time constraints must be posted
at schools with distant buildings, students need sufficient time between two consecutive
courses due to transportation, teachers prefer closest buildings, and every such location
changes should be minimized.

To obtain optimal solution, the problem should be solved together with time assignment
but it is also solved separately to simplify the solution.

Such problem description gives us the basic types of constraints.

(C1.5) Required or preferred equipment (e.g., laboratory, computer room) is available at
classroom for each course.

(C1.6) Classroom of suitable size must be assigned to each course.

(C1.7) Each course may have specified allowed or preferred set of its locations.

6.1.3 Section Assignment

Some schools having large groups of students for particular courses split them to course
sections (groups). The courses are taught in multiple sections with possibly different teacher,
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time slice, and classroom. The aim of section assignment is to find suitable timetables for
students with minimal conflicts for particular students while balancing section sizes and
respecting room capacities.

The problem is often solved with pre-assigned times, classrooms, and teachers for course
sections [LD86] and such problem instance is called student scheduling.

6.1.4 Teacher Assignment

The problem consists in assigning teachers to courses while maximizing satisfaction of pref-
erence function. For university-based timetabling, it is normally assumed that courses have
assigned their teachers a priori and this assignment does not take the part in automatic
timetabling. This fact is mainly due to the specific orientation of particular teachers at uni-
versities. Any choices among teachers are rather solved by discussion within faculty or
departments. However, teacher assignment could become interesting for problems with
large number of identical course sections where possible changes of assignment of particu-
lar teachers to course sections may substantially improve overall solution.

6.2 Current Constraint-based Approaches

Constraint satisfaction together with constraint logic programming is applied to a wide
range of timetabling problems despite the fact that it belongs to quite new solving techniques
with first implementations and papers starting in the nineties [BDP93, AB94, YKNW94,
BGJ94]. Constraint logic programming is particularly well suited for timetabling problems.
It allows the formulation of all the constraints of the problem in a more declarative way than
other approaches [Laj96, GJBP96], and in some cases, CLP programs are more efficient than
other kinds of programs [BDP96].

Aim of this section is to concentrate on solving of time assignment and classroom allo-
cation problems for schools with programs or classes which are often solved via constraint
programming approach. Student-oriented schedules which would require solving of sec-
tion assignment problem were not commonly constructed via constraint programming ap-
proach — this task will be discussed as a part of our work within Sect. 6.4 separately. Not
solving section assignment problem there wasn’t a substantial need to solve teacher assign-
ment problem (see discussion in Sect. 6.1.4).

6.2.1 Problem Modelling

Suitable representation of the problem by the variables and their domains can greatly influ-
ence the way constraints can be formulated and overall computational effectiveness. Time
assignment and classroom allocation problems prescribe two basic types of domain vari-
ables — time and classroom variables.

Time variables express which time slice of the day each course is taught. The most com-
mon time model represents time by consecutive numbering of all time slices [Laj96, GJBP96,
HW96, AB94, BKMQC97], usually running from Monday morning to Friday evening. Every
time variable denoted by Time has the domain

Time in 0..(NbTimeSliceDay * NbDays),
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where NbTimeSliceDay is a number of time slices per day and NbDays is a number of
days. Variable for day of course is then derived with help of constraint for each course if
some constraints on day are posted. Slightly different representation may define for each
variable two basic domain variables corresponding to time slice within day TimeOfDay and
day variable Day [FHS95, BGJ94]. Differences between these models are seen namely within
labelling process where variable and value ordering heuristics are computed wrt. either
to Time or TimeOfDay , Day variables. Additional problem dimension requiring another
variable Weekmay introduce teaching week of course [GKM98, GM99].

Some schools allows interruption of particular courses which is usually included into
problem solution via predefinition of course blocks each having separate time variables [AB94,
FHS95, Laj96]. It means that it is always supposed that basic timetabling units may not be
interrupted.

Generally courses considered within course timetabling have constant durations (none
domain variable for course duration need to be included). Particular models may be distin-
guished by taking into account all courses of the same fixed duration or the different variable
duration. Model with courses of fixed duration [BKMQC97] significantly simplifies solution
of overall problem as all requirements for unary resource (e.g., courses of the same program
or sharing the same teacher ask for non-overlapping via sharing of unary resource) may be
modeled using alldifferent constraint and requirements on cumulative resource via set
of atmost constraints (see Sect. 2.4.1 and Fig. 2.1(e)). Unfortunately more realistic problem
solutions must consider courses of variable duration [HW96, GJBP96, GKM98, AB94, Laj96].
Mostly such courses are modeled with help of domain variable expressing starting time
of course and constant for duration of course. Then disjunctive constraint expresses
basic relation of courses non-overlapping and cumulative constraint asks for cumulative
resources. A different solution for courses of variable duration proposes [Laj96], where start-
ing time with duration is replaced by a set of the so called class variables, each representing
one time slice of a course. Additionally, requirement on continuity of these time slices is
stated. Simpler constraints may be applied (alldifferent and atmost ) but they may be
outweighed by the increased size of the solution space.

Some schools may require the so called refined time slicing [GJBP96, HW96, GKM98,
GM99] which means that time slices (e.g., 15, 30 minutes, 1 hour) may be even shorter than
any course duration (e.g., 1, 2, 3 hours). Such time slicing may ensure appropriate time for
breaks between courses in different buildings, appropriate time for lunches, proper time co-
ordination with other timetables, etc. This requirement increases size of the solution space
due to enlarged domain of variables. It also necessitates application of more complex global
constraints like disjunctive as courses may partially overlap even if they have the same
fixed duration.

Representation of classroom variables together with selection of appropriate global con-
straints are tightly linked with selected time model and with requirements on classroom allo-
cation. Courses of fixed duration are usually represented by one classroom variable for each
course — trivial time model is followed by simplified classroom representation. Courses
of variable duration may need either one or more classroom variables for each time slice,
depending on allowed or prohibited changes of classrooms during one course. Basically
classrooms may be handled via global constraints for unary and cumulative resources wrt.
selected representation of variables as it was described for time variables. Further consider-
ation are discussed in Sect. 6.3 presenting our approaches for solving classroom allocation
problem.
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6.2.2 Preferences & Search

Constraint-based methods allow to separate definition of the problem which is given by
constraints from search of the solution space. For timetabling problems, search within such
space is often derived from preferences within the problem to find such solution which could
be accepted by both faculty and students.

Basically, search within solution space is performed without any global optimization cri-
teria via labelling heuristic or other non-systematic constraint relaxation methods. More
sophisticated approaches define some objective function over preferences within the prob-
lem with aim to optimize their value. More specifically such definition often leads to the
weighted CSP (see Sect. 3.1) and relaxing the constraints wrt. their costs.

Labelling Heuristics

Within the traditional CSP approach, preferences for selecting feasible solution are imple-
mented with the help of some labelling heuristics [AB94, GKM98]. Goltz et al. [GKM98]
applies the typical solutions — given unary soft constraints with priority are integrated into
the solution search through value and variable ordering heuristics. Azavedo et al. [AB94] de-
scribe decision steps leading to computing final labelling heuristics which instantiate hard
variables first, e.g., courses with demanded classrooms, or longer durations.

Non-Systematic Constraint Relaxation

An expensive search of overall solution space may be replaced by relaxation of difficult
constraints. Solutions described within this section try to relax constraints in order given
by some preferences but any global criteria considering overall number or quality of relaxed
constraints is not taken into account.

Papers [GJBP96, BGJ94] propose automatic relaxation systems but they don’t apply them
within their timetabling systems where all relaxations are done manually. The reason is that
they are not able to handle global constraints because the system manipulates with only
linear constraints.

Semi-automatic constraint relaxation is proposed and implemented by the so called vir-
tual time slice [Laj96] such that each infeasible course is placed into such virtual time slice.
Course becomes infeasible if it may not be scheduled to any non-virtual time slice. All such
infeasible courses are timetabled sooner with help of appropriate variable ordering in sub-
sequent runs. Courses which remain infeasible even after this treatment are sectioned (split
to several courses) and solved separately reducing the scope of conflicts between old and
newly sectioned courses.

[CKLW96, WZ98] introduce equivalent reversing to relax suitable constraints. When some
course is not successfully timetabled, soft constraints collected for this course are relaxed
with help of their hierarchical ordering (see Chapter 4). When a course becomes unschedu-
lable even with all relaxed soft constraints, the equivalent reversing tries to timetable it with
help of rescheduling of equivalent courses (enrollments in the same size range, same time-
zone, etc.). If this approach does not succeed to timetable some course, it is placed in a list
of unschedulable courses to be manually placed later.
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Cost-based Constraint Relaxation

A formulation of an over-constrained part of the problem may be included into the objective
function of constraint optimization problem. Associating costs to constraints or to values in
domain of variables for particular constraints, assignments with optimal costs are searched.
As a consequence we obtain a weighted constraint satisfaction problem. However, all men-
tioned approaches find some sub-optimal solution due to the size of the solution space for
real-life problems.

Timetabling system described in [FHS95] searches for optimal solution by branch and
bound algorithm but the constraints defining costs don’t play a role of active constraints —
they are implemented through value and variable ordering only. System searches either for
solution with optimal cost or for solution which cost is constrained by threshold.

Similarly branch and bound algorithm with selection of the preferred values from do-
mains of variables (preferred times are tried earlier) is applied by [HW96]. They construct
any-time algorithm such that user can interrupt the optimization at any time and request
currently best solution. Henz et al. recognize that going for the globally best solution is
not feasible. When the size (120/90 courses for [FHS95]/[HW96], resp.) and type (classi-
cal course timetabling without student schedules) of the solved problems are considered, it
remains doubtful whether this approach would scale up.

Yoshikawa et al. [YKNW94] solves high school timetabling problem via general-purpose
constrained solver COASTOOL able to handle costs of particular constraints. Within the first
step, they apply constraint propagation while any consistent values remain in domain of
variables and then they assign values with the least cost (look-ahead greedy algorithm). The
cost of constructed solution is improved via hill climbing [MJPL92] algorithm up to falling
into local minimum. Later [KYN99] propose a new heuristic repair method to escape from
this local minimum. They also improved initialization method which applies a heuristic
repair method whenever inconsistencies are found during construction of solution.

Weighted CSPs with costs for values in domain of particular variables was applied in
course time assignment problem [AM00, AM98] where cost (they call it assessment) of each
value in the domain of time variable is derived during computation. Final value with the
best cost is selected during value selection. They found the first solution satisfactory but
costs included in the problem could be extended to search by branch and bound for some
better solution. This implementation is the first approach with cost propagation within CLP
approach. However, described solution deals with department-sized problem only.

Similar method is implemented in classroom allocation problem [ASW00] with costs
computed for values in the domain of classroom variables. All soft constraints may be ex-
pressed by unary function returning how some classroom is desired for given course date.
Optimization requirement summarizes costs for all course dates and it searches for suffi-
cient sub-optimal solution. They have shown that cost propagation works efficiently for
university-sized classroom allocation problem (the biggest building consists of 40 classrooms
where about 1000 courses is held).

6.3 Classroom Allocation

Within Sect. 6.2.1 we have discussed general models for classroom allocation problems giv-
ing description of variable representation together with applied global constraints. In the
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following, we would like to concentrate on specific problems of classroom allocation and
their solution we have proposed and applied within [RM00, RM99a].

6.3.1 Identical Classrooms

Let us consider a typical situation arising when courses are scheduled to several classrooms
of the same characteristics (e.g., size, equipment). Instead of posting disjunctive con-
straint for each classroom, these classrooms are considered together by introducing one cu-
mulative resource of capacity ResourceLimit . Each course represented by StartJ and
DurationJ would require unit capacity of cumulative resource, i.e. ResourceJ is equal to
1 for each J . Such requirements allows application of global constraint cumulative from
Figure 2.1(b) on page 9. Allocation of particular classrooms may be postponed after time
assignment which significantly reduces the size of the solution space. This approach also
decreases the number of symmetries in CSP.

Exact allocation of classrooms takes O(ResourceLimit × TimeSlices ) steps where
TimeSlices denotes the overall number of time slices. A result of exact allocation for
Fig. 2.1(b) is shown on Fig 6.1. Let us note that such allocation assigns just the one classroom
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Figure 6.1: Exact allocation of classrooms for cumulative ([0,1,2],[3,3,4],[1,1,1],3)

for each course during all time slices of the course. This fact may become important when
courses are not allowed to change classrooms during their duration.

The following part shows construction of the desired solution together with its complex-
ity. The cumulative constraint ensures that smaller or equal number of courses than capac-
ity ResourceLimit is placed in every time slice. Now let us take classrooms in any fixed or-
der. Classrooms are assigned to courses subsequently. Each classroom is assigned to courses
in increasing time without any gaps if possible. We have proceed through all classrooms and
all time slices which gives the resulting complexity O(ResourceLimit × TimeSlices ).
When some course have remained without assigned classroom at the end, then some gap
beginning at the starting time of course has to exist wrt. existing cumulative resource. But
all courses were assigned in order given by starting time and any such gap may not exist.

6.3.2 Diverse Classrooms

Attention of this section is concentrated on allocation of classrooms having different capaci-
ties (C1.6). Having set of classrooms of various capacities it is not suitable to assign courses
to classrooms of exact capacity they require due to resulting unbalanced room occupation
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which could later lead to computing of much worse solution or no solution may even exists.
Often it is expected that courses may be placed into the classrooms of larger size than they
require and this possibility will be exhibited within this section. An extension of presented
solutions towards the requirement of suitable equipment (C1.5) is presented at the end of
the section.

Classroom Allocation After Time Assignment

First we will exhibit a solution which would allow to postpone any decision about classroom
assignment after completion of time assignment.

Let us suppose that each classroom Id is represented by its Capacity

classroom(Id,Capacity)

and each course by its starting time Start , Duration , and number of subscribed students
Students .

course(Start,Duration,Students)

One cumulative constraint

cumulative(StartList,DurationList,ListOf1,Limit)

is posted for each possible capacity of classroom denoted by Size and constant ListOf1
denotes a list of 1, which has the same length as StartList . DurationList has to include
durations of courses which are contained in StartList . Variables StartList and Limit
should satisfy following properties

StartList = {Start|course(Start,Duration,Students) ∧Students ≥Size}
Limit = card{Id|classroom(Id,Capacity) ∧Capacity ≥Size}

Example 6.1 Let us imagine small example with 2 rooms for 40 students, 3 rooms for 20
students, and 1 room for 10 students. Set of cumulative constraints follow

cumulative(Starts_of_courses_with_size_40,...,2),
cumulative(Starts_of_courses_with_size_20_40,...,5),
cumulative(Starts_of_all_courses,...,6).

The first constraint ensures that the largest courses are accommodated into the largest class-
rooms, the second constraint allows to place medium-sized courses into classrooms for 20
students and also to classrooms for 40 students if they are not already asked for by the first
constraint. The third constraint may move small courses between all classrooms in condition
that they are not occupied by any larger courses at the same time.

Presented solution restrains importance of classroom variables for many problems and
it allows splitting of the problem into primary time assignment and secondary classroom
assignment. Separated sub-problems have significantly decreased size of solution space and
a solution of the classroom assignment with known starting times of courses also becomes
easier. Unfortunately this solution does not exclude changes of classrooms during teaching
of particular course as it was shown for identical classrooms in Sect. 6.3.1.
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classrooms
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Figure 6.2: Course C15 for 15 students has to be taught in two classrooms.

Example 6.2 Let us imagine that course with small number of students (see course C15 for
15 students in Fig. 6.2) is assigned to large classroom (R40) during time slice t (2) because
all smaller classrooms (R20) are already occupied. During time slice t + 1 (3), some smaller
classroom (R20) becomes empty, large classroom (R40) is required by some larger course
(C40) which may not be moved to the small one wrt. its number of students, and the first
course (C15) has to change its classroom.

Final assignment of courses into classrooms must include one classroom variable for
each time slice of course. These variables may be instantiated with help of alldifferent
constraint posted for each time slice on corresponding classroom variables of all courses
scheduled during this time slice. Overall number of classroom changes for one course may
be decreased by minimization. Such minimization is run for classroom variables only and
it may be decomposed into several parts each including variables for courses Cs taught in
the same teaching day. Let us denote classroom variables for one course C of duration N by
[Room1,...,RoomN] . RoomI (for I=1 . . . N) is a domain variable over natural numbers
(each number corresponds to classroom). Objective function which value will be minimized
corresponds to

∑
(C,N)∈Cs

N−1∑
I=1

abs(sign(RoomI - RoomIpp) ) (6.1)

where RoomIpp is the (I+1) -th element of the list [Room1,...,RoomN] and sign returns
-1, 0, or 1 for positive, zero, or negative value of the argument, resp.

Partition of Classroom Allocation

Having requirement on prohibited classroom changes during teaching of one course, prob-
lem definition should be changed not to hold on generate-test principle, i.e., time assignment
is generated and than tested if classroom assignment without classroom changes exists (the
value of objective function from Eqn. 6.1 has to be equal to 0). In the following, we will study
possible solution of a new problem instance.

During time assignment we need to ensure that just one proper classroom is allocated
for each course during its duration. To achieve this aim, classroom allocation could be per-
formed before any time assignment. During time assignment, each classroom would be
represented via one unary resource. However, such problem solution is rather restricting
as it allows lack of flexibility during time assignment. Having the classrooms of identical
capacity, we may gather them into one cumulative resource within time assignment and
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postpone exact allocation of classrooms after time assignments. Due to proof for classrooms
of identical capacity in Sect. 6.3.1, such assignment of classrooms has to exist.

Let us consider particular steps of proposed solution in detail. Each classroom is identi-
fied by natural number corresponding to its order in the sequence of all classrooms sorted
by increasing capacity. Classrooms of the same capacity are taken in any fixed order. Ini-
tial domain of each classroom variable for course of certain capacity corresponds to iden-
tifiers (∈ N) of all classrooms having the required or any larger capacity. Initial classroom
allocation may be solved via constraint for cumulative resource, e.g.,

cumulative(RoomList,ListOf1,DurationList,NbTimeSlices).

RoomList contains proposed classroom variables for all courses and DurationList is
a list of their corresponding durations. Each course duration represents a capacity of cu-
mulative resource required by each course from overall capacity of cumulative resource
NbTimeSlices . The constant NbTimeSlices is a number of time slices during the whole
scheduled period, e.g., week. ListOf1 corresponds to list of 1 as each course asks for one
classroom. Let us note that such shape of cumulative constraint corresponds to the exam-
ple from Figure 2.1(c) on page 9.

Example 6.3 Let us imagine small example with 2 classrooms r40_1 , r40_2 for 40 students,
3 classrooms r20_1 , r20_2 , r20_3 for 20 students, and 1 classroom r10_1 for 10 students.
Such classrooms may be sorted in the following way

r10_1 ≡1 r20_1 ≡2 r20_2 ≡3 r20_3 ≡4 r40_1 ≡5 r40_2 ≡6

Let us consider courses requiring classroom of capacity 10, 10, 20, 20, and 40 having dura-
tions 1, 2, 3, 1, and 4, resp. As a consequence we get

R1,R2 in 1..6, R3,R4 in 2..6, R5 in 5..6,
cumulative([R1,R2,R3,R4,R5],[1,1,1,1,1],[1,2,3,1,4],NbTimeSlices),

where R1, R2, R3, R4, R5 represent classroom variables for particular courses.

After labelling of classroom variables, each course have assigned one particular classroom.
Instead of posting disjunctive constraint for each classroom during time assignment, one cu-
mulative constraint may be posted for all courses asking for classrooms of the same capacity.
As we have already mentioned existence of final classroom assignment after processed time
assignment was proven in Sect. 6.3.1.

Unfortunately presented solution still allows a lower degree of flexibility than the one
presented in previous section for courses with allowed classroom changes. During time as-
signment it could occur that classroom of sufficient capacity remains to be free within certain
time slice but we have already restricted ourselves to classrooms of different capacity which
may be all already engaged within this time slice. Such behavior may be partially eliminated
via balanced occupation of classrooms but it still does not achieve the same degree of flexi-
bility. It should be carefully decided whether possible changes of classrooms which may be
for certain problem instances minimal outweigh this disadvantage.
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Possible Extensions

Proposed sets of overlapping cumulative constraints for first solution and the discussed
cumulative constraint for second solution may introduce only one part of the problem rep-
resenting courses of the same equipment. To include constraint (C1.5) for classrooms with
different equipment (e.g., lecture hall, computer room), one overlapping set of cumulative
constraints (or one cumulative constraint for second solution) is added for each type of
room. However, such straightforward solution is only applicable for pairwise disjoint sets
of classrooms, where one cumulative set contains classrooms of the same equipment.

Both implementations of the constraint (C1.6) expect that size of particular courses is
known before constraints are stated. Sometimes it may occur that the size of courses de-
creases (e.g., pre-enrollments of students into courses may not be fully satisfied) and it may
seem that described solution is not very suitable wrt. possible relaxations of required size
of classroom. However, the complexity of proposed model may increase such that possible
profit would be outweighed. Fortunately the number of students which are not able to at-
tend pre-enrolled course may be neglected — scheduling students into classroom is able to
satisfy more than 94 % course pre-enrollment requirements [RM00, BvBM98, Car00, SFW95].

6.4 Student-Oriented Timetables

We have seen that student time requirements (C1.2) for class-teacher meetings or programs
may be efficiently represented via global constraints as a set of strict requirements (see
Sect. 6.2.1). Constraints within student-oriented timetabling would have to express that
courses of each student may not overlap in time. For schools with diverse student timeta-
bles, straightforward addition of such disjunctive constraint for each student as a hard con-
straint would make the problem over-constrained. The aim of this section is to present our
approach allowing inclusion of this sub-problem into the CLP paradigm.

6.4.1 Student Conflict Minimization

Our intent will be devoted to the definition of suitable objective function which value could
be optimized in final solution. Such optimization criteria for student-oriented schedules
should minimize the sum of course sections, which student is not able to attend wrt. con-
current schedule of other his (her) course sections, for all students. Each generated timetable
may be evaluated by the so called StudentsConflict reflecting solution quality wrt. the value
of objective function. The following part defines StudentsConflict and its approximation and
describes the process of computing sub-optimal solution of time assignment sub-problem
with help of StudentsConflict approximation.

Each student pre-enrolls some set of courses. We will suppose that section assignment
gives as a result fixed course section(s) for each his (her) course, i.e., we may optimize overall
number of the conflicting sections for any student. Because we don’t know which of conflict-
ing course sections will be selected by particular student, we need to consider some selection
criteria c to express attendance of course sections by each student. StudentsConflict(c) will
summarize the number of course sections which students are not able to attend due to selec-
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tion criteria c.

StudentsConflict(c) =
∑

s

ConflictingSection(c, s) (6.2)

ConflictingSection(c, s) denotes the number of course sections which student s is not able to
attend wrt. selection criteria c. To obtain correct interpretation of solution quality, we have to
consider StudentsConflict(cmax ) with worst possible selection of course sections by students
as our cost estimation.

∃cmax∀cStudentsConflict(cmax ) ≥ StudentsConflict (c)

Example 6.4 Let us demonstrate above statements by a small example. We will consider
contribution of one student to the sum StudentsConflict. Selected student is assigned to
course sections {i004, i005, i002} within section assignment. Part of generated timetable
including these course sections is shown at Fig. 6.3. Student s may decide to cancel ei-

9:00 10:00 11:00 12:00

i001 i002

i003

i004 i005

Figure 6.3: Small example of generated timetable

ther course section i002 (ConflictingSection(c1, s) = 1) or course sections i004 and i005
(ConflictingSection(c2, s) = 2). The value StudentsConflict(cmax ) has to subsume the worst
case contribution for each student, which means cmax = c2.

Let us define TwoConflict (i, j) as a number of students which pre-enrolls both course
sections i and j. For course section i, TimeOverlap(i) is a set of all course sections having
overlap with i, VarOrder(i) gives instantiation order of time assignment variable for course
section i in the sequence of time assignment variables.

Let us denote StudentsConflict inc as our approximation of StudentsConflict(cmax ) which
may be incrementally computed and optimized during time assignment of particular course
sections, i.e., during labelling of time variables.

StudentsConflict inc =
∑

i

SectionConflict(i) (6.3)

Each value of SectionConflict(i) contributes to the resulting StudentsConflict inc by sum of
TwoConflict (i, j) for all course section j having already assigned their starting time dur-
ing labelling of time variables ((VarOrder (j) < VarOrder(i)) and overlapping with i (j ∈
TimeOverlap(i)).

SectionConflict(i) =
∑

j∈TimeOverlap(i)

VarOrder(j)<VarOrder(i)

TwoConflict (i, j) (6.4)
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Example 6.5 Let us go back to the timetable at Fig. 6.3 and suppose that times of course
sections were assigned in order i004, i005, i003, i001, and i002. For example, the value Sec-
tionConflict(i005) is equal to 0 because none of previously assigned course sections (only i004)
overlaps with i005. Last assigned course section i002 overlaps with i004, i005, and i003. Its
SectionConflict is equal to the sum TwoConflict(i002,i004) + TwoConflict(i002,i005) + TwoCon-
flict(i002,i003).

Corollary 6.1 The value StudentsConflictinc is an upper bound of StudentsConflict(c) for any
selection criteria c, i.e.,

StudentsConflict inc ≥ StudentsConflict (cmax ) .

Proof: StudentsConflict(cmax ) summarizes ConflictingSection(cmax , s) for all students s (see
Eqn. 6.2). ConflictingSection(cmax , s) includes some selection of overlapping course sections
for student s which we will denote csi for i going from 1 to ConflictingSection(cmax , s). Each
csi is subsumed into ConflictingSection(cmax , s) if it overlaps with some course section csio

also pre-enrolled by student s. This overlap is either included in SectionConflict(cs i) for
VarOrder(cs io) <VarOrder(csi) or contributes to SectionConflict(cs io) for VarOrder(cs i) <
VarOrder(cs io). �

StudentsConflictinc also cumulates some additional fail contributions. These contributions
are related to multiple course sections of one student overlapping at the same time and it
may occur if at least three course sections are cumulated into subsequent time slices.

Example 6.6 Let us consider a student attending courses sections {i002, i003, i004} and the
timetable from the Fig. 6.3. A contribution to the objective function StudentsConflict(cmax )
corresponds to 2 but its approximation StudentsConflictinc is increased by 3 for any ordering
of course sections during time assignment.

The resulting quality of our upper bound depends both on selection criteria c and on above
described cumulative error. However, these inaccuracies decrease with increasing quality of
generated timetable and may be even abandoned for sufficiently fair solutions1.

6.4.2 Soft Disjunctive Scheduling Problem

Within the last section we have shown how the problem may be seen as an optimization
problem and defined its objective function via Eqns. 6.3 and 6.4. Here we will propose the
so called soft disjunctive scheduling problem which instance is also discussed student conflict
minimization problem.

First let us introduce soft disjunctive (scheduling) constraint. Disjunctive scheduling will
be understood in its standard interpretation as a scheduling of disjunctive activities (see
Sect. 2.4.1) and the attribute soft will express that some of the activities may overlap as their
disjunctive scheduling is an over-constrained problem. Different criteria can be defined ex-
pressing the most desirable non-overlapping of activities. Examples are maximization of
the number of non-overlapping activities or the preferred non-overlapping of activities of

1Let us expect that at least 90 % requirements in course pre-enrollment would be satisfied. Having average
number of courses for each student equal to 10, it would result in approximately one course per student which
he/she is not able to attend. Taking into account number of time slices within a week, such average overlapping
doesn’t become substantial for discussed fail contributions
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higher rank. The second criteria requires some ordering or ranking of particular activities
within problem definition.

Example 6.7 Let us consider a student having pre-enrolled 6 course sections.

C1@required, C2@required, C3@strong, C4@strong, C5@medium, C6@weak

Such ordering expresses that student has to visit courses C1 and C2 as they are compulsory,
he would like to attend optional courses C3, C4 and prefers them over C5, C6, and his least
preferred course is C6.

Let us note that such ordering of activities may be introduced within the problem definition
with help of variables’ annotations (see Chapter 5).

Soft disjunctive scheduling problem (SDSP) is given by a set of soft disjunctive scheduling
constraints

softDisjunctive([Start i1, . . . ,Start imi],
[Duration i1, . . . ,Duration imi]) for i = 1, . . . ,mi

where variables Start ij, Duration ij belong to a set of variables

S = {Start l | l = 1, . . . , n} , D = {Duration l | l = 1, . . . , n} , (6.5)

resp. Two soft disjunctive constraints may have common variables.
With help of standard semantics of disjunctive constraint, each SDSP P may be rewritten

into a binary SDSP P2 such that all soft disjunctive constraints have only two activities.

softDisjunctive([S1,S2], [D1,D2]) S1,S2 ∈ S, D1,D2 ∈ D

Because the original constraints may share some variables each soft disjunctive constraint
may possibly occur in a new SDSP w times. Cardinality w of such soft disjunctive constraint
in SDSP P2 certainly expresses how important non-overlapping of its activities is and it may
be called a cost of soft disjunctive constraint. We may even construct conflict matrix having
n × n elements with each cell corresponding to the cost of soft disjunctive constraints be-
tween activities from the set of activities given by S, D (see Eqn. 6.5). Non-existence of soft
disjunctive constraint for some activities would naturally infer a zero value in corresponding
cell of conflict matrix.

If all activities in SDSP P have a constant duration then resulting binary SDSP P2 is
a binary constraint satisfaction problem. Another simplification may be resolved when all
activities have the same unit duration2. Then resulting binary CSP contains only binary
constraints representing inequalities S16=S2.

Solution Approaches

Transformation of the general SDSP into the SDSP P2 allows us to handle original problem
with help of frameworks for solving constraint satisfaction problems with preferences (see
Chapter 3). Preferences in the problem P2 can be expressed by costs within the conflict

2Within timetabling problem, we would require fixed duration of courses and model without refined time
slicing (see Sect. 6.2.1).
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matrix. The SDSP P2 can be handled via weighted constraint satisfaction (see Sect. 3.1) and
fuzzy constraint satisfaction (see Sect. 3.4), the basic representatives of different complexity
classes of CSPs with preferences (see Sect. 3.8.3).

In weighted CSP approach, cost of each soft disjunctive constraint in SDSP P2 may repre-
sent a weight of constraint. Solution of SDSP P2 is then such assignment of variables in S,
D that sum of costs of violated soft disjunctive constraint is minimized (see corresponding
Defs. 3.2 and 3.3 for weighted CSPs).

Fuzzy CSP interpretation will try to find solution of SDSP via min-max optimization. First
we will define fuzzy relation corresponding to each soft disjunctive constraint with cost w
via Eqn. 3.1 and normalization of costs into unit interval. Having n activities, maximal cost
correspond to n2−n

2 which is the maximal cardinality of any soft disjunctive constraint in
SDSP P2. Each cost w may be transformed into w′ = 2w

n2−n
to achieve the normalization. If

a soft disjunctive constraint is satisfied then its level of preference corresponds to 1 and if it is
not then it corresponds to 1−w ′ (definition of fuzzy relation for soft disjunctive constraint).
Solution of such fuzzy CSP is obtained via search of assignment of variables in S, D (see
Eqn. 6.5) having the maximal satisfaction degree where satisfaction degree of assignment is
given by minimal level of preference among all soft disjunctive constraints.

Relation with Student Conflict Minimization

Soft disjunctive constraint can be seen as requirements of one student within course pre-
enrollment. Summarized course pre-enrollment informations define SDSP over time vari-
ables.

Objective function proposed in Sect. 6.4.1

StudentsConflict inc =
∑

i

∑
j∈TimeOverlap(i)

VarOrder(j)<VarOrder(i)

TwoConflict(i, j)

corresponds to satisfaction degree of weighted CSP over soft disjunctive constraints between
course sections i and j having weight equal to cost of this constraint, i.e., TwoConflict(i, j).
The condition j ∈ TimeOverlap(i) expresses that soft disjunctive constraint is not satisfied.
By the second condition VarOrder(j) < VarOrder(i), we take into account each cost of un-
satisfied soft disjunctive constraint only once.

Having proposed interpretation through fuzzy CSP, we could also perform search of
optimal solution for student conflict minimization problem via fuzzy min-max optimization.

6.5 Variables’ Annotations in Timetabling

In Sect. 6.2.1, we have written about two basic types of variables in timetabling problem,
about classroom variables and time variables describing each course. Annotations of such
variables may express users’ preferences given by facts like how many students are enrolled
to the course, seniority of the course teacher (professor, assistant, . . . ), or required classroom
for course (more or less occupied). Annotations expressing expectation about difficulty of
variable’s assignment may describe how demanded some resource is (classrooms or teach-
ers) or how critical (constraining) some requirements on variable is (e.g., highly restricted
time for course expressed by constraint).
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These preferences are combined via variable ordering method (see Sect. 5.4) to achieve
that both more important and more critical variables will be instantiated first. This instanti-
ation order also allows us to assign more preferred values to such variables prior to others
which may not be so important. That way, soft unary constraints on particular variables
may be applied in order influenced by annotations. Remaining non-unary soft constraints
are posted (if possible) to prune the solution space as a consequence of assignment of vari-
able which occurs in the constraint.

6.5.1 Timetabling Constraints with Annotations

Semantics of annotations depends on the context of constraint where variable with annota-
tions occurs. We will give several examples to demonstrate their typical semantics.

Hard Constraints. Each course section requires suitable teacher (C1.1). This constraint
adds annotation for time variable of course section corresponding to the seniority of the
teacher to promote teaching times of course wrt. given teacher.

To make timetables acceptable for teachers, we have to restrain the number of time slices
for teacher per day (C1.4). The value of time slices is related with annotation — more impor-
tant annotation corresponds to the smaller number of time slices. Such annotation reflects
following relation: the lower the number of time slices is the more difficult this condition
becomes.

Some teachers may prohibit or order particular teaching times (C1.3) and annotation
expresses how strong such requirement is to enforce possible earlier assignment of highly
constrained time variables. While full-time teachers are available in a non-restricted way,
requirements of partial-time teachers may have strong impact on possible teaching time of
their courses. That way, annotations reflect possible flexibility of particular teachers.

Soft Constraints. Unary constraints may prefer certain time slices for courses (e.g., times
from 9 a.m. to 5 p.m.) or restrain others like Friday’s afternoon (C1.4). Particular value
ordering may be specific wrt. teacher’s requirement (C1.3). Annotation of variables in all
these constraints may stress more frequent times, smaller required domains, and/or who
and why is asking for special time assignment.

Similarly unary constraints may express within classroom allocation which classrooms
are the most or the least preferred by the teacher (C1.5)+(C1.7). Such requirement may again
stress how demanding such requirement is and who/why is asking for it.

Time dependency constraint (C1.3) includes non-standard requirements of particular
teachers. Set of course sections should be taught in the same day, some lectures should
be taught before their corresponding seminars. Let us consider a constraint expressing that
lecture (T1) should precede all seminars (T2,T3,T4 ).

before(T1@strong,[T2@medium,T3@weak,T4@weak])

Annotations in these constraints represent seniority of teacher.
Most of teachers would like to attend special colloquy taught by invited lecturers. An-

notation of starting time of the colloquy in this constraint belongs to the most important
annotations. Later assignment of this variable would be very problematic. This constraint
also includes times of all course sections taught by those teachers. Their annotation is again
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given by the seniority of each teacher to express which violation would be less important.
Semantics of such constraint makes promising an application of hierarchical annotations
which would emphasize the time variable for colloquy, e.g.,

differTimes(Colloquy@(1,0),CourseI@(0,1),CourseJ@(0,2),...)

Teaching (PhD.) students may prefer non-overlapping of several courses. Some non-
overlapping courses are specified as required constraints but most of them include student
priority to satisfy such requirement (see also Example 6.7). This priority is directly translated
into annotation of particular course section.

differTimes(Teach@required,Study1@strong,Colloquy@medium,
Study2@weak,Study3@weak)

Section 6.4.1 proposes an objective function representing requirement on minimization of
conflicts between course sections of particular students. This objective function was shown
as a special type of soft constraint (see Sect. 6.4.2) and we also define preferences on its
variables which are all time variables included in the problem. They could express that
course section should be scheduled in such a way that the number of conflicts with other
course sections is minimal. This semantics leads us to the definition of annotation of time
variable for course section related with the maximal possible number of student conflicts
with other course sections (for course section ci:

∑
j TwoConflict(ci, cj)). Such annotations

are aimed to promote earlier assignment of time variables for course sections with possibly
greater contribution to the value of objective function.

6.6 Faculty of Informatics Timetabling Problem

Faculty of Informatics timetabling problem represents large scale highly constrained sched-
uling problem as individual timetable for every student from more than thousand students
has to be scheduled wrt. course pre-enrollment information. The number of prescribed
courses is small, majority of courses are optional and so the sets of enrolled courses for
each student can be very different. The probability of any two courses conflicting is about
30 % (which is equivalent to more than 10 000 constraints).

Having diverse requirements within course pre-enrollment, special section assignments
has to be processed. Each course may consists from lecture or seminar or lecture+seminar,
where the number of lectures and/or seminars is determined by the number of students
pre-enrolled on a course, and with respect to teacher’s requirements. Computing an ideal
timetable should solve the problem of section assignment such that each student is able
to visit one lecture and/or one seminar for each his (her) specified course. Each course
section is then given by a tuple 〈course, lecture or seminar identifier/order, set of students〉.
Basically our task consists in instantiation of the set of tuples 〈course section, classroom,
time〉, i.e., each lecture or seminar has assigned its set of students, classroom, and time.
Teachers of particular courses are determined as a part of our problem definition, so we
don’t need to solve this kind of resource allocation — assign teachers to courses.

Let us describe particular problem components in detail.

Section assignment assigns students to course sections, where an input of this problem are
tuples 〈number of lectures, number of seminars, students〉 given for each course, and
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an output is a set of course sections defined by tuple 〈course, lecture or seminar iden-
tifier, set of students〉.

Classroom allocation for particular course sections while satisfying following hard and soft
constraints

(C6.1) only one course section can take place in a classroom at a time;
(C6.2) course section must not change classroom during its duration;
(C6.3) each classroom has to have sufficient capacity wrt. expected number of stu-

dents in course section;
(C6.4) each classroom has to have suitable equipment due to teacher’s requirements

(lecture hall, computer room, classroom with data projector);
(C6.5) exception — one teacher can teach two course sections in two specific class-

rooms at the same time either with use of camera and video projection or to
ensure arbitrary exchange between computer room and lecture hall;

(C6.6) teachers may specify preferences on classroom selection (e.g., selection of class-
rooms in certain part of building).

Time assignment of starting times to course sections while minimizing total number of
course sections which overlap for any student and satisfying following hard and soft
constraints: (C6.1), (C6.5), and

(C6.7) each teacher gives only one course section at a time;
(C6.8) interruption of course section wrt. time is not allowed;
(C6.9) maximal number of time slices for teacher per day has to be respected;

(C6.10) requested time of course sections wrt. strict unavailability of teacher has to be
respected;

(C6.11) various hard time dependencies are given between two or more course sec-
tions;

(C6.12) Friday afternoon is restrained;
(C6.13) early morning and late evening times are generally restrained;
(C6.14) special time preferences for course section are specified by teacher;
(C6.15) various soft time dependencies between two or more course sections are given

by teachers.

Problem Size

With respect to growing size of our school we can use input data of different scope. Each
instance is timetabled for 5 days with 13 teaching time slices. Each course section has vari-
able duration from 1 to 4 time slices. Currently our implementation includes two different
data sets with courses scheduled at the main faculty building. The number of our course
sections is 234 and 269, resp. We have 93 (113) teachers, 12 (18) classrooms, 948 (1 255) pre-
enrolled students3, and 10 360 (13 289) student’s requirements in course pre-enrollment, resp.
Currently our problem definition includes 454 and 483 preferential requirements, resp. The
probability of any two course sections conflicting is about 30 % (which is equivalent to 7 440
and 11 635 constraints, resp.).

3Actual number of students is slightly higher — about 1 000 and 1 400 students.
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6.6.1 Solution Structure

Generally all sub-problems should be solved together to obtain such assignment of students,
classrooms, and times to course sections that the hard constraints are satisfied, the objective
function is minimized, and all soft constraints are satisfied to the largest possible extent. Wrt.
the size of such general problem, we separated the most complex section assignment prob-
lem and constructed the feasible division of students as an input for other problems. This
approach allows us to compute for every two course sections i, j a number TwoConflict(i, j)
of students which want to visit both course sections. With this we may generate student-
oriented schedules with help of objective function proposed in Sect. 6.4.

Following part of the section describes application of particular approaches proposed
within this chapter to solve Faculty of Informatics timetabling problem. We concentrate on
the structure and principles of the problem solution and refer to corresponding parts of this
chapter including details on sub-problem solution. Representation of particular constraints
was realized with help of built-in constraints applying standard approaches as summarized
in Sect. 6.2.

Section Assignment. The output of section assignment problem should be some feasible
splitting of students into particular course sections. Set of registered students for each course
is basically sorted in lexicographic order and then split wrt. the required number of groups.
The lexicographic order is advantageous wrt. the splitting of the same student group to
lectures and to seminars, i.e., useless conflicts for seminars and lectures of the same course
are not imposed.

Classroom Allocation. The basic requirement of the classroom allocation is prohibited
change of classrooms during duration of each course section (C6.2). Such restriction does not
allow to postpone decisions on assignment of classrooms after time assignment and we are
required to apply solution which pre-assigns course section to set of classrooms of the same
capacity (see Sect. 6.3.2). Specified equipment of classroom is included into problem defini-
tion via three types of cumulative resources corresponding to lecture halls, classrooms with
data projector, and computer rooms. Within this initial classroom assignment, annotations
are defined for particular constraints as discussed in Sect. 6.5. Labelling of initial classroom
allocation applies standard backtracking with variable ordering computed by global vari-
able annotations, and with value ordering reflecting requirements of soft constraint (C6.6).
Exact allocation of identical classrooms is completed after time assignment as discussed in
Sect 6.3.1.

Time Assignment. Each course section is represented by the one time variable reflecting
constraint (C6.8). Basic representation of hard constraints is in correspondence with descrip-
tion in Sect. 6.2.

Both hard and soft constraints include annotations as it was shown by examples in
Sect. 6.5 which also propose inclusion of soft constraints with help of annotations. The two
possible instances of annotation framework are considered in our problem. Basically Avect

approach puts variables with teacher’s requirements on higher level while student’s inter-
ests or classroom properties are deferred. Asum approach summarizes all annotations in one
level.
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Generation of student-oriented schedules is ensured with help of objective function we
have proposed in Sect. 6.4.1. Incremental behavior of this function (Eqn. 6.3) allows its direct
application within labelling which is processed via standard backtracking. Variable ordering
is defined with help of global variable annotations, special value ordering is described in the
following paragraph.

Generally, value ordering heuristics select the most promising values from more pre-
ferred values. By the promising value for time variable of course section i we mean those
with their potential optimal contribution SectionConflict(i) to the value of objective function
StudentsConflict inc . The preferred values may be defined for each variable separately (C6.14)
or generally (C6.13)+(C6.12). Several levels of preferences (preferred values) may be given
by soft constraints. The preferred values from the first level are selected in increasing order
and current value of overlaps SectionConflict(i) is compared with two kinds of thresholds.
Absolute threshold is a maximal number of students in one course section for whom some
overlapping with other course sections may occur and relative threshold is a ratio between
the number of students with any overlap and the number of students pre-enrolled to the
course section NumberStudents(i)

absolute threshold: SectionConflict(i) ≤ AbsThreshold ; (6.6)

relative threshold: SectionConflict(i)
NumberStudents(i) ≤ RelThreshold . (6.7)

If SectionConflict(i) is not sufficient the next remaining value is tried. Both thresholds may
be also combined — if one of the thresholds is satisfied, value may be selected for instantia-
tion. If values of current preference level are not sufficient to find feasible solution, values
from lower level are tried in increasing order again. Possible faulty instantiations are undone
by backtracking.

Values of objective function for different input data are compared via

Ratio = 1− StudentsConflict inc

NbStudentRequirements
(6.8)

with NbStudentRequirements as a number of student’s requirements in course pre-enrollment.
This gives us a percentage of satisfied students’ requirements in course pre-enrollment.

6.6.2 Implementation & Computational Results

Described timetabling system was implemented in ILOG software [Pap94, Pug94], an ob-
ject oriented library for constraint logic programming in C++. Computing the first solution
takes 2–3, and 4–5 seconds on a Pentium II/400 MHz PC for the first and the second prob-
lem instance (particular data sets were described in Sect. 6.6), resp. Table 6.1 shows achieved
results for particular data sets and annotation frameworks (general description of annota-
tions may be found in Sect. 6.5; for further information about the concrete instances Asum

and Avect see Sect. 6.6.1). The best achieved values of thresholds AbsThreshold (Eqn. 6.6)
and RelThreshold (percentage from Eqn. 6.7) follow in the third and fourth columns. For the
presented thresholds, generated solutions are evaluated also with help of the percentage
of successfully satisfied soft constraints and with help of the value Ratio (percentage from
Eqn. 6.8) giving us quality of solution wrt. the objective function.

Asum framework computes better solution for absolute thresholds while Avect annota-
tions output more interesting results with relative thresholds. This is a consequence of higher
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Data set A AbsThreshold RelThreshold Soft constr. Ratio

I. Asum 4 – 92.7 95.4

I. Avect – 9 91.9 94.8

I. Asum 3 6 90.3 96.4

I. Avect 1 7 91.2 95.6

II. Asum 8 – 95.0 92.1

II. Avect – 14 91.9 93.7

II. Asum 3 13 90.7 94.5

II. Avect 2 13 91.9 94.0

Table 6.1: Computational results for timetabling problem at FI

support of student’s interests expressed by the number of students in A sum . While the large
course sections (by the number of students) were satisfied to the high extent, importance of
smaller course sections was deferred. If only one of the both thresholds have to be satis-
fied, results for Asum and Avect were comparable. Results also show that both optimization
criteria are antagonistic — if student’s conflicts are minimized, the quality of satisfaction of
preferential constraints decreases, and vice versa.

6.7 Comparison with Other Approaches

Constraint Programming. Constraint programming was often applied for solving time as-
signment and classroom allocation problems as we have discussed in Sect. 6.2. Solution
of section assignment sub-problem is included in [BvBM98] via iterative addition of con-
straints into a CSP representation. This implementation is able to find timetable satisfying
99 % student’s requirements. However, this solution of high school timetabling problem
doesn’t include any additional requirements which are critical for solution of university-
based timetabling problems. Their inclusion would be even problematic as authors imple-
mented their own solution procedure as a CSP not applying constraint programming ap-
proach. To our knowledge, constraint programming was not applied for search of student-
oriented schedules at all.

Other Solution Methods. To compare our results with other solutions, let us mention im-
plementation of timetabling systems including other methods solving problems of compa-
rable type.

Comprehensive university-sized timetabling system [Car00] may be characterized by
problem decomposition wrt. both type and size of final sub-problems. They were able to
solve the problem for 20 000 students with the largest problem component with 2 500 con-
flicts (inequalities) between course sections. On the other hand, our problem included more
than 10 000 conflicts. With this comparison, it looks promisingly when our approach would
be included as a component solver instead of applied greedy heuristics for time assignment.

Local search heuristic procedure [SFW95] solves the problem with comparable results
wrt. satisfaction of course enrollment having smaller solution space with 85 course sections
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decomposed to part of weeks.
Aubin&Ferland [AF89] propose an iterative method to solve the problem which alter-

nately assign times and students to course sections. However, proposal of special heuristic
procedure for solution of this large scale system handling 3 300 students makes problematic
extension of the problem definition by additional constraints.

Robert&Hertz [RH96] decompose the problem into a series of easier sub-problems corre-
sponding to time, section, and classroom assignments and solve them via tabu search meth-
ods. Their problem solution allows addition of various side constraints but they need to be
all included into one constraint function. Presented method is able to generate initial solu-
tion which can be incrementally improved after problem redefinition (negotiation on initial
constraints with teachers and students). Achieved results looks promisingly even for initial
solution without any negotiation as they were able to find schedules for about 500 students
with approximately 10 % of unsatisfied student requirements. However, diversity of student
requirements may not be so meaningful as both courses and students may be split into levels
consisting of compulsory and optional courses. Possible extension of the problem size also
remains open as computing of the solution takes several hours.

Examination Timetabling. Different kind of comparison may be obtained for solutions
where constraint programming is applied to solve examination timetabling problem [CL96a,
BDP96]. For this type of problem, section assignment problem plays also a substantial role as
students must be distributed to their corresponding exams. Examination problem empha-
sizes side constraints as precedence constraints or spread constraints, objective functions
may be also different (e.g., conflict-free timetable, examinations as early as possible), but
the basic problem is the same — assign exams (courses) to a time slices in such a way that
students are able to attend some sections of their exams (courses). Nature of the problem
doesn’t allow to consider variations of class-teacher oriented timetabling and as a conse-
quence student-oriented schedules are constructed. The main disadvantage of solutions ap-
plying CLP methods is the search of conflict-free schedules for students [BDP96, LCKC00,
BDP93, RO00] which may not be valid for course timetabling problem at all. Unfortunately
the same disadvantage holds for all other implementations of examination problem solved
via CSP mentioned in recent survey of Carter&Laporte [CL96a].
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Chapter 7

Conclusion

Within this chapter we would like to mention possible directions of our future research,
summarize the main contributions of this thesis, and give a global view to its particular
parts.

7.1 Future Work

Let us study further directions of our research wrt. discussed problem areas within this the-
sis.

Hierarchies. Proposed SCSP classes for particular comparators of CH and their catego-
rization based on properties of each instance allow further study of this framework from the
point of view of general semiring-based and valued CSPs approaches. Showing correspon-
dence with non-idempotent classes, last results from the area of algorithms [Sch00a, BGR00]
for such classes can be taken into account also for CHs. We would like to study possible
impact of this research on CHs and compare these results with extensive study in the area of
algorithms for solving particular comparators of CHs (see [Bar97, Bar98] for surveys). Such
research would be aimed towards a proposal of new algorithms for solving both compara-
tors of CHs and general problem classes of meta-frameworks.

Local comparators defines non-idempotent SCSP class with partial ordering while the
most studied instances include only total ordering [Sch00a]. Such conclusion opens new
areas for study of the properties and algorithms for this type of classes.

Lexicographic-better comparator may become interesting as it eliminates contra-intuitive
behavior of worst-case-better comparator and allows application of general SCSP approach.
We intend to study possible algorithms for finding lexicographic-better solutions and further
application of such comparator for solving real-life problems.

Annotations. We would like to study potential of annotations for solving problems with
help of constraint-based methods with special intent devoted to over-constrained and con-
straint optimization problems where preferences play a critical role to define and find feasi-
ble solution.

We plan to propose and carry out experiments (e.g., on random CSP) with annotations as
a source for computing variable ordering aimed to compare them with other methods and

89
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show their general usefulness which is currently demonstrated from the point of view of
a practical application only.

Annotations expressing preferences of variables have shown to be interesting for declar-
ative definition of global soft constraints. However, efficient algorithms taking into account
over-constrainedness of the problem were studied for minor sub-problems only [BLPP98,
Rég99]. Our future research will include extensions of constraint propagation algorithms for
this type of constraints. We should mention especially alldifferent and disjunctive
constraints which extension towards handling over-constrained problems would be helpful,
e.g., in our timetabling application.

Timetabling. Our study of timetabling problem was oriented towards generation of sched-
ules for individual students via constraint programming approach. Current solution may
profit from application of constraint propagation methods for cost-based constraint relax-
ation applied in [AM00, AM98]. Based on our proposed instance of soft disjunctive schedul-
ing problem we also plan to extend our solution strategy for student conflict minimization
problem with help of the research in the area of algorithms for solving weighted and fuzzy
CSPs [Sch00a, BGR00].

We intend to study further combination of classroom allocation and time assignment
problems. It still remains open the possibility of a more interleaved solutions of individ-
ual subproblems which may substantially improve quality of generated solution. With in-
creasing size of the problem, it may be more promising to study solution of separated sub-
problems while taking into consideration specialized solution methods from the areas of
scheduling and resource allocation.

Further improvements of implemented timetabling system may include more sophis-
ticated solutions of initial section assignment problem as it was proposed in [Car00] or
take into account teacher assignment problem for courses with large number of equivalent
courses sections.

Our solution approach was able to solve faculty-sized problem. For university-sized
problems, it may become interesting to consider a proper problem decomposition as the one
discussed in [Car00] and apply constraint-based approach to solve obtained sub-problems
with help of the solver component, e.g., based on our implementation of Faculty of Infor-
matics timetabling problem.

7.2 Contributions

Let us shortly summarize main contributions of the thesis.

• Unifying view to particular approaches for solving CSPs with preferences within the-
oretical part of the thesis.

• New ordered-better and lexicographic-better comparators for constraint hierarchies
and proposal of an algorithm for ordered-better comparator [Rud98c].

• Categorization of comparators of constraint hierarchies over finite domains via pro-
posed classes of semiring-based CSPs with help of a new equivalence over general
SCSP classes.
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• Proposal of a new framework for handling preferences over variables including ap-
proaches for fuzzy and hierarchical annotations [Rud98a, Rud99, Rud98b] and com-
puting variable ordering [RM99b].

• Proposal of solution strategies for construction of student-oriented schedules applied
for Faculty of Informatics timetabling problem [RM00, RM99a].

More detail description may be found as a part of the following section.

7.3 Summary & Discussion

We would like to give a complete overview of the thesis within this section by summariza-
tion and discussion of its contents.

After short introduction of CSP & CLP schemes in Chapter 2, we present theoretical foun-
dations of thesis including description of particular frameworks for solving CSPs with pref-
erences (Chapters 3–5). As we intended to give a unifying view to particular approaches,
we have proposed a uniform structure which is followed by all frameworks. Each of them
elucidates notions of constraint (natural extension of constraint definition by a specific pref-
erence), problem (how it is extended to handle given preferences), satisfaction degree (aimed
to evaluate particular assignments), solution (defined with help of satisfaction degree via its
optimal value), and consistency degree (up to which extent may be given problem satisfied).

Practical part of thesis contains the study of timetabling problem (Chapter 6) applying
approaches for solving constraint satisfaction problems with preferences.

Frameworks. Chapter 3 gives a background of existing frameworks for solving CSPs with
preferences. Starting from the basic frameworks over particular types of preferences (we-
ighted, probabilistic, possibilistic, fuzzy CSPs), we continue to meta-frameworks (partial,
valued, semiring-based CSPs). Basic frameworks may be obtained by specification of a gen-
eral algebraic structure of meta-framework. Weighted CSP applies costs to optimize satis-
faction of particular constraints (e.g., minimize sum of weights of unsatisfied constraints).
Probabilities allow to express the degrees how much each constraint is valid in some ill-
defined problem. Here we need to search for a definition of the real problem together with
its best solution. Possibilistic CSP assigns a possibility degree to each constraint expressing
how desirable its satisfaction is. This problem together with fuzzy CSP may be handled via
min-max optimization. Fuzzy CSP associates the same type of preference to each tuple of
values of constraint, however.

Partial CSP introduces the first attempt towards the generalization of basic approaches
via problem relaxation. Later proposed valued CSP (VCSP) and semiring-based CSP (SCSP)
build axiomatic theories which enable the construction of non trivial generic properties and
algorithms. Particular formalisms define monoid and lattice structures to catch various pref-
erences. While the monoid structure is able to handle only totally ordered preferences, SCSP
with its lattice structure may represent partial ordering also. Multi-criteria optimization be-
longs to a typical representatives which require this property.

Even if SCSP is able to handle partial ordering of preferences, relation of equivalence
between different SCSPs is not able to consider them. This led us to definition of a new
equivalence and refinement which are able to compare SCSP classes with partial ordering of
preferences, too (in Sect. 3.7.4). This definition remains in accordance with basic idea behind
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the refinement: if some problem is a refinement of another one, then its set of solutions is
included in the set of solutions of the later problem.

Together with the comparison of meta-frameworks, final part of this chapter summarized
relationships between particular basic frameworks which may be partitioned according to
the idempotency of unifiable operator of both algebraic structures. Classical CSP, possibilis-
tic and fuzzy CSP may be transformed via polynomial refinement into weighted CSP but the
opposite transformation doesn’t exist. It means that problem of finding optimal solution of
weighted CSP can not be reduced to fuzzy CSP.

Constraint Hierarchies. Constraint hierarchies (CHs) and namely hierarchical constraint
logic programming belong to traditional frameworks for handling of over-constrained prob-
lems. They allow to express hard constraints which has to be satisfied and several preference
levels of soft constraints which violations are minimized level by level subsequently. CHs
define the so called comparators aimed to select solutions (the best assignment of values
to particular variables) via minimizing errors of violated constraints. Global comparators
aggregate errors of violated constraints at each level, basically we may compare weighted
sum of errors or error of worst satisfied constraint (weighted-sum-better and worst-case-
better comparators). Local (locally-better) comparator considers each constraint individu-
ally, regional comparator is able to select among assignments by individual comparison of
constraints at some lower level even if they are incomparable at higher levels.

Starting from Sect. 4.3, this chapter describes our contributions within the area of CHs.
We have enhanced classical local comparator such that it is able to apply weights similar
to those existing for weighted-sum-better comparator and proposed the so called ordered-
better comparator [Rud98c]. We have studied its relationship with locally-better compara-
tor — based on it and on existing algorithm for locally-better comparator we have proposed
a new extended algorithm which is able to find ordered-better solution of CH. Our further
study was concentrated on a more accurate proposal of the worst-case comparator which
evokes following contra-intuitive behavior: violating a constraint with large weight we are
not able to differ assignments violating or satisfying constraints with any smaller weight.
This disadvantage may be eliminated with help of lexicographic ordering which led us to
the definition of the lexicographic-better comparator.

Even if the CHs are extensively studied and diverse algorithms were discussed to solve
particular comparators, any correspondence of CH’s comparators with existing algebraic
meta-frameworks wasn’t shown with exclusion of vague statements about their relationship
with enhanced versions of fuzzy CSPs:

Fuzzy CSPs are able to model prioritized constraints, that is, constraints with different
levels of importance [BMMW89]. Taken from [BMR97b].

This opens not only a theory gap, but also practical problems which disable the applicability
of any general algorithm already proposed. We have even shown that comparators of CHs
either belong to more complex classes of SCSP or don’t have counterpart in any SCSP class.

Our effort was devoted to the proposal of instances of particular algebraic structures
which would capture most of the discussed comparators. Remaining of them are shown to
be incompatible with some of the required properties of algebraic structures. As the sec-
ond step, we have applied our extended definitions of equivalence and refinement between
classes of SCSPs and we have classified all comparators of CHs which have an existing coun-
terpart in some class of SCSP.
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Basically we have constructed three classes of SCSP: weighted-SCSP corresponding to
comparators derived from weighted-sum-better comparator, lexicographic-SCSP for lexic-
ographic-better comparator, and local-SCSP for locally-better and ordered-better compara-
tors. Worst-case-better comparator doesn’t have its SCSP’s counterpart due to above de-
scribed contra-intuitive behavior — this makes lexicographic-better comparator even more
important as its equivalent SCSP class does exist. The property which forbids a proposal
of SCSP class for regional comparator is just its ability to compare assignments which are
incomparable at higher levels.

Weighted-SCSP and lexicographic-SCSP are shown to be equivalent with the weighted
CSP and lexicographic CSP via polynomial time refinement, resp. This relationship might
be expected because all of them have non-idempotent operator and total ordering of pref-
erences. The total ordering implies that all comparators dedicated to weighted-SCSP and
lexicographic-SCSP classes may be defined as classes of VCSP. However, this doesn’t hold
for local-SCSP having partial ordering of preferences. This class may be polynomially trans-
formed into the weighted CSP but the opposite transformation may not be constructed as
the preferences within local-SCSP are partially ordered.

Variables’ Annotations. Existing frameworks associate preferences either with constraints
or with each tuple of values of constraint. An original contribution of the thesis concerns
another still not investigated possibility, the idea of assigning preferences to particular vari-
ables in constraint. Such preferences may express different levels of importance for partic-
ular variables (e.g., time of events within temporal scheduling may be classified by partic-
ipant’s interest, order of job within jobs’ sequence is influenced by owner’s priority, prior
placement of objects may depend on their properties).

We have proposed an annotation triple, a structure over annotations defining ordering
over annotations, and function for combining particular annotations. Local annotations of
variables within constraints are combined to compute global annotations of variables and
constraints via specified combining function. Examples of its instances are discussed and
applied for computing solution via fuzzy annotations, hierarchical annotations, and variable
ordering [RM99b].

Fuzzy and hierarchical annotations [Rud98a, Rud99, Rud98b] present interpretation of
variable’s annotations based on existing frameworks with preferences, on fuzzy CSP and
constraint hierarchies. For fuzzy annotations, global constraint annotations define prefer-
ences for selection of solutions via min-max optimization. A correspondence of constraint
system with fuzzy annotation with both fuzzy and possibilistic CSPs is proven. For hierar-
chical annotations [Rud98c], annotated constraint hierarchy (ACH) is constructed with help
of global annotations which define weights of particular constraints. Solution of ACH is
computed by different methods inherited by weighted-sum, worst-case, and least-square
principles. Another method is presented via individual comparison of particular global an-
notations at each level. Mapping of applied methods to particular comparators of CH is
presented in accordance with selection method for global comparators. Solutions obtained
via individual comparison are compatible with the proposed ordered-better comparator of
CHs. Based on the algorithm for computing the ordered-better solution of CH, we have
implemented a solver for systems of inequalities with annotations.

Another interpretation of annotations considers them as a source for computing variable
ordering (VO) in CSPs with preferences. Several methods are proposed including different
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annotation triples and static versus dynamic VO. While static VO is computed with help
of global annotations within initial solving step, dynamic VO recomputes global annotation
each time a variable should be instantiated. Such global annotations take into account those
variables only which remain to be free wrt. current partial assignment of variables in given
computation step.

Timetabling. The final part of the thesis concerns practical application of constraint-based
approach with preferences in the area of timetabling [RM00, RM99a]. Our intent was de-
voted to the course timetabling problem which is a typical representative of scheduling and
resource allocation application where various type of preferences need to be involved to
obtain any acceptable solution.

First we have introduced general problem considering particular courses, teachers, class-
rooms, and students as the basic objects. Having courses with too large number of students,
they may be split to course sections. The main tasks to be solved are section assignment
(assign students to particular course sections), classroom allocation (assign classrooms to
course sections), and time assignment (assign time to course sections).

Subsequently our attention was devoted to current solution methods of the classroom
allocation and time assignment problems via constrained-based approach. We have dis-
tinguished possible models of problem solution including classroom and time assignment
variables wrt. problem properties. We have also studied methods for search of solution
space wrt. preferences within the problem. Such search can be performed with no global op-
timization criteria via labelling heuristics or non-systematic constraint relaxation methods.
Labelling heuristics influence solution search by an ordering of variables and values in their
domains. Both orderings may reflect preferences within the problem. Constraint relaxation
methods select some of the problem constraints to be violated. Here selection of violated
constraints depends on their preferences. More sophisticated approaches define some ob-
jective function over preferences within the problem with aim to optimize its value. This
definition often leads to the weighted CSP and relaxing the constraints wrt. their weights or
costs.

Starting from Sect. 6.3, this chapter contains our works within the area of timetabling.
First we have studied classroom allocation problem and proposed representation of prob-
lem with help of global constraints for distinguished problem instances. The most simple
problem definition allows to allocate classrooms of the same capacity to courses such that all
requirements towards classrooms can be specified over time variables and overall classroom
allocation can be postponed after completing the time assignment. We have defined suffi-
cient property of the problem together with its representation by global constraints to allow
such separation of classroom allocation and time assignment also for classrooms of various
capacities and types. To solve general problem instance, we partitioned classroom allocation
to two steps which are processed before and after time assignments.

We have studied construction of student-oriented schedules representing problem which
still was not solved via CP methodology. The first part defines an objective function over
generated timetable minimizing the number of courses which student is not able to attend
wrt. parallel schedule of his (her) other course(s). Incremental definition of approximation
of this objective function allows its inclusion into labelling. The second part defines soft
disjunctive scheduling problem (SDSP) which instance is also designated student conflict
minimization problem. Solution of such SDSP is defined via weighted and fuzzy constraint
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satisfaction as the basic representative of different complexity classes of CSPs with prefer-
ences.

Preferences are also included into the problem with help of variables’ annotations as
overall problem is stated in variables having their own natural preferences. Annotations are
derived from seniority of teachers (dean, professors, assistants, . . . ), type of classrooms, or
interest of students expressed by their requirements in course pre-enrollment. These annota-
tions are applied via variable ordering methods. Examples of hard and soft constraints with
annotations are described finally.

Proposed methods are applied for Faculty of Informatics timetabling problem which so-
lution was implemented in CLP library of ILOG Scheduler. Overall problem is character-
ized by requirements of scheduling courses for individual students (more than 1 000 stu-
dents) and taking into account preferential requirements of teachers towards any acceptable
timetable. Achieved computational results conclude this part, within them the most interest-
ing one is a quality of generated timetable satisfying more than 94 % students’ requirements.

Finally we have compared our solution methods and achieved results with other ap-
proaches and solutions of comparable problem instances. We have shown that our problem
solution is comparable with other solution methods while preserving advantages of declar-
ative definition and easier extension of the problem definition.
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Appendix A

Multi-sets

Multi-sets are extended sets with allowed repetition of elements. Set of all multi-sets over
elements belonging to set W may be be defined with help of a relation W to N. Such relation
will be denoted NW in the rest1.

Let us define cardinality card(x,M) of element x in a multiset M giving the number of
repetition of element x in the multi-set M . card(x,M) = 0 holds if x doesn’t occur in M .

A union t of multisets M1,M2 has to satisfy following property

[M = M1 tM2] ≡ [∀x ∈ M : card(x,M) = card(x,M1) + card(x,M2)] . (A.1)

A multiset M1 is included in a multiset M2 iff each element of M1 occurs in M2 with the
same or greater cardinality

[M1 v M2] ≡ [∀x ∈ M1 : card(x,M1) ≤ card(x,M2)] . (A.2)

As multi-set inclusion defines an ordering we say that M1 is minimum min� from multi-
sets M1, M2 while M2 is their maximum max�

[M1 v M2] ≡ [M1 = min�(M1,M2) ∨ M2 = max�(M1,M2)] . (A.3)

Another (lexicographic) ordering over multi-sets is induced by the totally ordered set W
of elements in multi-set. A lexicographic inclusion @lex of multi-sets M1,M2 is defined by

[M1 @lex M2] ≡ [w1 = max
x∈M1

x,w2 = max
x∈M2

x :

(w1 <W w2) ∨ ((w1 =W w2) ∧ ((M1 − {w1}) @lex (M2 − {w2})))] (A.4)

The recursion ends to ∅ which is the minimal multi-set. Let us note that this ordering is total
while classical inclusion v is a partial ordering only.

Lexicographic minimum and maximum are defined by

[M1 vlex M2] ≡ [M1 = minlex (M1,M2) ∨ M2 = maxlex (M1,M2)] . (A.5)

1As an example let us recall the notion of set of all subsets of A which is a relation A to 2 denoted 2A.
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Abstract

Various types of preferences were proposed to find solutions of over-constrained problems,
optimization problems, problems with uncertainties, or ill-defined problems where some
kind of softness have to be involved to get feasible solutions. Studying these problems from
the point of view of constraint satisfaction, we concentrate on description of constraint sat-
isfaction problems (CSPs) with preferences. An original contribution consists in assigning
preferences to particular variables in constraint which lead to study of constraints with the
so called variables’ annotations. Local annotations of variables in constraints are introduced
as a method for computing static and dynamic variable ordering in CSPs with preferences.
Interpretations based on existing frameworks with preferences, on fuzzy CSP and constraint
hierarchies, use fuzzy and hierarchical annotations. Our intent is also devoted to constraint
hierarchies (CHs) having several preference levels of constraints and defining solutions via
the so called comparators. New ordered-better and lexicographic-better comparators are
proposed and their comparison with traditional comparators of CHs is discussed. Subse-
quently an algorithm for solving CH with ordered-better comparator is presented. Certain
comparators of CHs are introduced as instances of general framework for CSPs with prefer-
ences, semiring-based CSP, and classified into complexity classes with help of a new equiv-
alence for semiring-based CSPs. It is also shown that any correspondence does not exist for
remaining comparators. Practical application of constraint-based approaches with prefer-
ences is described for timetabling problem having special emphasis on variables’ annota-
tions. Concentration is devoted to construction of student-oriented schedules representing
problem which still was not solved via constraint programming methodology. Proposed
methods are applied for solving Faculty of Informatics timetabling problem including con-
struction of individual student schedules for more than 1 000 students. Achieved results are
compared with other solution methods and solutions of comparable problem instances.
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